Vasopressin synthesis by the magnocellular neurons is different in the supraoptic nucleus and in the paraventricular nucleus in human and experimental septic shock.

Details

Serval ID
serval:BIB_B5775F38BDA7
Type
Article: article from journal or magazin.
Collection
Publications
Title
Vasopressin synthesis by the magnocellular neurons is different in the supraoptic nucleus and in the paraventricular nucleus in human and experimental septic shock.
Journal
Brain Pathology (zurich, Switzerland)
Author(s)
Sonneville R., Guidoux C., Barrett L., Viltart O., Mattot V., Polito A., Siami S., de la Grandmaison G.L., Blanchard A., Singer M., Annane D., Gray F., Brouland J.P., Sharshar T.
ISSN
1750-3639 (Electronic)
ISSN-L
1015-6305
Publication state
Published
Issued date
2010
Peer-reviewed
Oui
Volume
20
Number
3
Pages
613-622
Language
english
Notes
Publication types: Comparative Study ; Journal Article ; Research Support, Non-U.S. Gov'tPublication Status: ppublish
Abstract
Impaired arginine vasopressin (AVP) synthesis and release by the neurohypophyseal system, which includes the neurohypophysis and magnocellular neurons of the paraventricular and supraoptic nuclei, have been postulated in septic shock, but changes in this system have never been assessed in human septic shock, and only partially experimentally. We investigated AVP synthesis and release by the neurohypophyseal system in 9 patients who died from septic shock and 10 controls, and in 20 rats with fecal peritonitis-induced sepsis and 8 sham-operation controls. Ten rats died spontaneously from septic shock, and the others were sacrificed. In patients with septic shock, as in rats that died spontaneously following sepsis induction, AVP immunohistochemical expression was decreased in the neurohypophysis and supraoptic magnocellular neurons, whereas it was increased in the paraventricular magnocellular neurons. No significant change was observed in AVP messenger RiboNucleic Acid (mRNA) expression assessed by in situ hybridization in either paraventricular or supraoptic magnocellular cells. This study shows that both in human and experimental septic shock, AVP posttranscriptional synthesis and transport are differently modified in the magnocellular neurons of the supraoptic and paraventricular nuclei. This may account for the inappropriate AVP release in septic shock and suggests that distinct pathogenic mechanisms operate in these nuclei.
Keywords
Adult, Aged, Aged, 80 and over, Animals, Arginine Vasopressin/biosynthesis, Disease Models, Animal, Female, Humans, Male, Middle Aged, Neurons/metabolism, Neurons/secretion, Paraventricular Hypothalamic Nucleus/metabolism, Paraventricular Hypothalamic Nucleus/secretion, Rats, Rats, Wistar, Shock, Septic/metabolism, Supraoptic Nucleus/metabolism, Supraoptic Nucleus/secretion
Pubmed
Web of science
Create date
13/10/2015 10:59
Last modification date
20/08/2019 16:23
Usage data