From personalized to precision medicine in oncology: A model-based dosing approach to optimize achievement of imatinib target exposure.

Details

Ressource 1Download: pharmaceutics-15-01081.pdf (1592.74 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_829AAAA406A8
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
From personalized to precision medicine in oncology: A model-based dosing approach to optimize achievement of imatinib target exposure.
Journal
Pharmaceutics
Author(s)
Goutelle S., Guidi M., Gotta V., Csajka C., Buclin T., Widmer N.
ISSN
1999-4923 (Print)
ISSN-L
1999-4923
Publication state
Published
Issued date
2023
Peer-reviewed
Oui
Volume
15
Number
4
Pages
1081
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
Imatinib is a targeted cancer therapy that has significantly improved the care of patients with chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, it has been shown that the recommended dosages of imatinib are associated with trough plasma concentration (Cmin) lower than the target value in many patients. The aims of this study were to design a novel model-based dosing approach for imatinib and to compare the performance of this method with that of other dosing methods. Three target interval dosing (TID) methods were developed based on a previously published PK model to optimize the achievement of a target Cmin interval or minimize underexposure. We compared the performance of those methods to that of traditional model-based target concentration dosing (TCD) as well as fixed-dose regimen using simulated patients (n = 800) as well as real patients' data (n = 85). Both TID and TCD model-based approaches were effective with about 65% of Cmin achieving the target imatinib Cmin interval of 1000-2000 ng/mL in 800 simulated patients and more than 75% using real data. The TID approach could also minimize underexposure. The standard 400 mg/24 h dosage of imatinib was associated with only 29% and 16.5% of target attainment in simulated and real conditions, respectively. Some other fixed-dose regimens performed better but could not minimize over- or underexposure. Model-based, goal-oriented methods can improve initial dosing of imatinib. Combined with subsequent TDM, these approaches are a rational basis for precision dosing of imatinib and other drugs with exposure-response relationships in oncology.
Keywords
imatinib, pharmacokinetics, model-informed precision dosing, oncology, antineoplasic agents
Pubmed
Web of science
Open Access
Yes
Create date
29/03/2023 21:11
Last modification date
18/10/2023 7:10
Usage data