From personalized to precision medicine in oncology: A model-based dosing approach to optimize achievement of imatinib target exposure.

Détails

Ressource 1Télécharger: pharmaceutics-15-01081.pdf (1592.74 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_829AAAA406A8
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
From personalized to precision medicine in oncology: A model-based dosing approach to optimize achievement of imatinib target exposure.
Périodique
Pharmaceutics
Auteur⸱e⸱s
Goutelle S., Guidi M., Gotta V., Csajka C., Buclin T., Widmer N.
ISSN
1999-4923 (Print)
ISSN-L
1999-4923
Statut éditorial
Publié
Date de publication
2023
Peer-reviewed
Oui
Volume
15
Numéro
4
Pages
1081
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Résumé
Imatinib is a targeted cancer therapy that has significantly improved the care of patients with chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, it has been shown that the recommended dosages of imatinib are associated with trough plasma concentration (Cmin) lower than the target value in many patients. The aims of this study were to design a novel model-based dosing approach for imatinib and to compare the performance of this method with that of other dosing methods. Three target interval dosing (TID) methods were developed based on a previously published PK model to optimize the achievement of a target Cmin interval or minimize underexposure. We compared the performance of those methods to that of traditional model-based target concentration dosing (TCD) as well as fixed-dose regimen using simulated patients (n = 800) as well as real patients' data (n = 85). Both TID and TCD model-based approaches were effective with about 65% of Cmin achieving the target imatinib Cmin interval of 1000-2000 ng/mL in 800 simulated patients and more than 75% using real data. The TID approach could also minimize underexposure. The standard 400 mg/24 h dosage of imatinib was associated with only 29% and 16.5% of target attainment in simulated and real conditions, respectively. Some other fixed-dose regimens performed better but could not minimize over- or underexposure. Model-based, goal-oriented methods can improve initial dosing of imatinib. Combined with subsequent TDM, these approaches are a rational basis for precision dosing of imatinib and other drugs with exposure-response relationships in oncology.
Mots-clé
imatinib, pharmacokinetics, model-informed precision dosing, oncology, antineoplasic agents
Pubmed
Web of science
Open Access
Oui
Création de la notice
29/03/2023 21:11
Dernière modification de la notice
18/10/2023 7:10
Données d'usage