Revisiting gene typing and phylogeny of Trypanosoma cruzi reference strains: Comparison of the relevance of mitochondrial DNA, single-copy nuclear DNA, and the intergenic region of mini-exon gene.

Details

Ressource 1Download: 37739149.pdf (2591.39 [Ko])
State: Public
Version: Final published version
License: CC BY-NC-ND 4.0
Serval ID
serval:BIB_7CD9CBA46794
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Revisiting gene typing and phylogeny of Trypanosoma cruzi reference strains: Comparison of the relevance of mitochondrial DNA, single-copy nuclear DNA, and the intergenic region of mini-exon gene.
Journal
Infection, genetics and evolution
Author(s)
Barnabé C., Brenière S.F., Santillán-Guayasamín S., Douzery EJP, Waleckx E.
ISSN
1567-7257 (Electronic)
ISSN-L
1567-1348
Publication state
Published
Issued date
11/2023
Peer-reviewed
Oui
Volume
115
Pages
105504
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Abstract
Chagas disease is a widespread neglected disease in Latin America. Trypanosoma cruzi, the causative agent of the disease, is currently subdivided into six DTUs (discrete typing units) named TcI-TcVI, and although no clear association has been found between parasite genetics and different clinical outcomes of the disease or different transmission cycles, genetic characterization of T. cruzi strains remains crucial for integrated epidemiological studies. Numerous markers have been used for this purpose, although without consensus. These include mitochondrial genes, single or multiple-copy nuclear genes, ribosomal RNA genes, and the intergenic region of the repeated mini-exon gene. To increase our knowledge of these gene sequences and their usefulness for strain typing, we sequenced fragments of three mitochondrial genes, nine single-copy nuclear genes, and the repeated intergenic part of the mini-exon gene by Next Generation Sequencing (NGS) on a sample constituted of 16 strains representative of T. cruzi genetic diversity, to which we added the corresponding genetic data of the 38 T. cruzi genomes fully sequenced until 2022. Our results show that single-copy nuclear genes remain the gold standard for characterizing T. cruzi strains; the phylogenetic tree from concatenated genes (3959 bp) confirms the six DTUs previously recognized and provides additional information about the alleles present in the hybrid strains. In the tree built from the three mitochondrial concatenated genes (1274 bp), three main clusters are identified, including one with TcIII, TcIV, TcV, and TcVI DTUs which are not separated. Nevertheless, mitochondrial markers remain necessary for detecting introgression and heteroplasmy. The phylogenetic tree built from the sequence alignment of the repeated mini-exon gene fragment (327 bp) displayed six clusters, but only TcI was associated with a single cluster. The sequences obtained from strains belonging to the other DTUs were scattered into different clusters. Therefore, while the mini-exon marker may bring, for some biological samples, some advantages in terms of sensibility due to its repeated nature, mini-exon sequences must be used with caution and, when possible, avoided for T. cruzi typing and phylogenetic studies.
Keywords
Humans, Trypanosoma cruzi/genetics, Phylogeny, DNA, Mitochondrial, DNA, Intergenic, Genotype, Chagas Disease/parasitology, Exons, Genetic Variation, DNA, Protozoan/genetics, DTU, Marker, NGS, Trypanosoma cruzi, mini-exon
Pubmed
Web of science
Open Access
Yes
Create date
29/09/2023 15:40
Last modification date
13/12/2023 8:20
Usage data