Big Data in Oncology Nursing Research: State of the Science.
Details
Serval ID
serval:BIB_55A4F59D9EA7
Type
Article: article from journal or magazin.
Publication sub-type
Review (review): journal as complete as possible of one specific subject, written based on exhaustive analyses from published work.
Collection
Publications
Institution
Title
Big Data in Oncology Nursing Research: State of the Science.
Journal
Seminars in oncology nursing
ISSN
1878-3449 (Electronic)
ISSN-L
0749-2081
Publication state
Published
Issued date
06/2023
Peer-reviewed
Oui
Volume
39
Number
3
Pages
151428
Language
english
Notes
Publication types: Journal Article ; Review
Publication Status: ppublish
Publication Status: ppublish
Abstract
To review the state of oncology nursing science as it pertains to big data. The authors aim to define and characterize big data, describe key considerations for accessing and analyzing big data, provide examples of analyses of big data in oncology nursing science, and highlight ethical considerations related to the collection and analysis of big data.
Peer-reviewed articles published by investigators specializing in oncology, nursing, and related disciplines.
Big data is defined as data that are high in volume, velocity, and variety. To date, oncology nurse scientists have used big data to predict patient outcomes from clinician notes, identify distinct symptom phenotypes, and identify predictors of chemotherapy toxicity, among other applications. Although the emergence of big data and advances in computational methods provide new and exciting opportunities to advance oncology nursing science, several challenges are associated with accessing and using big data. Data security, research participant privacy, and the underrepresentation of minoritized individuals in big data are important concerns.
With their unique focus on the interplay between the whole person, the environment, and health, nurses bring an indispensable perspective to the interpretation and application of big data research findings. Given the increasing ubiquity of passive data collection, all nurses should be taught the definition, characteristics, applications, and limitations of big data. Nurses who are trained in big data and advanced computational methods will be poised to contribute to guidelines and policies that preserve the rights of human research participants.
Peer-reviewed articles published by investigators specializing in oncology, nursing, and related disciplines.
Big data is defined as data that are high in volume, velocity, and variety. To date, oncology nurse scientists have used big data to predict patient outcomes from clinician notes, identify distinct symptom phenotypes, and identify predictors of chemotherapy toxicity, among other applications. Although the emergence of big data and advances in computational methods provide new and exciting opportunities to advance oncology nursing science, several challenges are associated with accessing and using big data. Data security, research participant privacy, and the underrepresentation of minoritized individuals in big data are important concerns.
With their unique focus on the interplay between the whole person, the environment, and health, nurses bring an indispensable perspective to the interpretation and application of big data research findings. Given the increasing ubiquity of passive data collection, all nurses should be taught the definition, characteristics, applications, and limitations of big data. Nurses who are trained in big data and advanced computational methods will be poised to contribute to guidelines and policies that preserve the rights of human research participants.
Keywords
Humans, Big Data, Medical Oncology, Nursing Research/methods, Oncology Nursing, Research Personnel, Big data, Data science, Malignant neoplasms, Nursing research, Oncology nursing
Pubmed
Web of science
Open Access
Yes
Create date
25/04/2023 13:11
Last modification date
01/08/2023 5:56