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A B S T R A C T

Objective: To review the state of oncology nursing science as it pertains to big data. The authors aim to define
and characterize big data, describe key considerations for accessing and analyzing big data, provide examples
of analyses of big data in oncology nursing science, and highlight ethical considerations related to the collec-
tion and analysis of big data.
Data Sources: Peer-reviewed articles published by investigators specializing in oncology, nursing, and related
disciplines.
Conclusion: Big data is defined as data that are high in volume, velocity, and variety. To date, oncology nurse
scientists have used big data to predict patient outcomes from clinician notes, identify distinct symptom phe-
notypes, and identify predictors of chemotherapy toxicity, among other applications. Although the emer-
gence of big data and advances in computational methods provide new and exciting opportunities to
advance oncology nursing science, several challenges are associated with accessing and using big data. Data
security, research participant privacy, and the underrepresentation of minoritized individuals in big data are
important concerns.
Implications for Nursing Practice: With their unique focus on the interplay between the whole person, the
environment, and health, nurses bring an indispensable perspective to the interpretation and application of
big data research findings. Given the increasing ubiquity of passive data collection, all nurses should be
taught the definition, characteristics, applications, and limitations of big data. Nurses who are trained in big
data and advanced computational methods will be poised to contribute to guidelines and policies that pre-
serve the rights of human research participants.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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Introduction

With advances in technology, the conceptualization, definition,
and use of big data in research have evolved. An early definition of
big data included three main attributes, known as the three Vs: “high
volume, high velocity, and/or high variety information assets that
demand cost-effective, innovative forms of information processing
that enable enhanced insight, decision making, and process automa-
tion.”1 Volume refers to a large amount of data; velocity refers to a
high-frequency stream of incoming data; and variety refers to a wide
range of data sources or types that require different syntactic formats.
Additional Vs that were added over time include variability (ie, the
extent to which investigators must differentiate “noise” from impor-
tant data), veracity (ie, data quality or accuracy), and value (ie, the
importance of the data).2-4
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Big data in health care encompasses large amounts and diverse
types of data from the rapid and increased digitization of individual
patient information. The use of big data to improve health outcomes
requires cost-effective collection of information from different sour-
ces, conversion and storage of data into specific formats, and process-
ing and analyses of this information according to the needs of the
user.5 Data can be obtained from internal or external sources, includ-
ing clinical and biological data from electronic health records (EHRs)
or research (eg, omics), public or government records (eg, public
datasets), or financial records (eg, insurance or payor).6 In addition,
big data includes patient-generated health data (PGHD). PGHD are
“health-related data � including health history, symptoms, biometric
data, treatment history, lifestyle choices, and other information �
created, recorded, or gathered by or from patients (or family mem-
bers or other caregivers) to help address a health concern.”7 Social
media can be a complementary source of health-related data and
may be used for epidemiological surveillance or control.8

The use of high-volume datasets in nursing research is well estab-
lished.9 For decades, nurse scientists have led analyses of data col-
lected as part of routine health care and administration. Several
landmark nursing studies have leveraged clinical and administrative
claims data to inform safe staffing ratios10 and approaches to pres-
sure ulcer11 and fall risk assessment.12 Leveraging routinely collected
data offers an alternative to the collection of large quantities of data
directly from research participants, which may impose a burden on
some individuals with a health impairment.13 When large datasets
include nurse-sensitive indicators (eg, patient falls, nosocomial infec-
tion rates), analyses may provide evidence for the value of nursing
care and its association with health outcomes.14

Over the years, advances in computing power and computational
methods (see Papachristou et al in this Big Data Special Issue) have
expanded the potential for high-velocity and high-variety data to
meaningfully inform patient care.15 Oncology nurses tailor their
interventions to account for the biological, social, cultural, and envi-
ronmental factors that may affect a person’s well-being. High-variety
data have the potential to inform this patient-centered approach. For
example, big data often underlies precision health initiatives that aim
to deliver health care that is optimized for a person’s unique genetic
or genomic composition, lifestyle influences, and the context in
which they live.16 Large datasets composed of information from a
variety of sources can help oncology nurse scientists identify novel
biological, psychosocial, or environmental factors that predict or con-
tribute to disease burden. In addition, analyses of big data may sup-
port clinical decision making by identifying complex combinations of
factors that predict adverse health outcomes. In turn, these analyses
may allow nurses to identify patients who may benefit from proac-
tive interventions.13 The authors aim to describe some of the most
common sources of big data available to oncology nurse researchers,
describe access considerations to these data sources; and provide
exemplars of big data research from oncology nurse scientists. In
addition, the authors describe important ethical issues that need to
be considered when amassing, using, and reporting findings from big
data analyses and suggest directions for future research.

Sources of Big Data and Access Considerations

Electronic Health Record

The EHR exemplifies big data. It consists of a large volume of clini-
cally relevant information that is continually updated and derived
from a variety of sources. Data stored in the EHR are varied and may
include clinician notes, vital signs, laboratory reports, telemetry data,
imaging data, ICD codes, and PGHD (eg, symptom reports). Investiga-
tors can extract structured data from the EHR to characterize study
participants. Structured data have a standardized format and are eas-
ily stored in an organized database. Examples of structured data that
are relevant to oncology nursing research include date of cancer diag-
nosis, blood pressure, and tumor stage. Conversely, unstructured data
lack a standardized format and are more difficult to organize. Exam-
ples of unstructured data include clinician’s narratives, scanned
handwritten notes or test results, and free-text findings from imaging
studies. Because manual review and extraction of unstructured data
are time-consuming and costly,17 these data are currently underused
in research. The underrepresentation of unstructured data in the
oncology literature represents a missed opportunity, given that an
estimated 70% to 80% of EHR data are unstructured.18

Novel computational methods have the potential to analyze large
volumes of unstructured EHR data efficiently and accurately. For
example, in patients with multiple chronic conditions, natural lan-
guage processing (NLP) was used to analyze and extract symptom
data from nursing notes to identify groups of patients with similar
symptom cluster profiles.19,20 In the oncology setting, NLP was used
to analyze narrative EHR data from 808 patients receiving palliative
care at the end of life.17 The investigators sought to develop and eval-
uate models to detect social distress, spiritual pain, and severe symp-
toms from 1,554,736 clinician narratives. The investigators developed
core search terms for each construct, trained NLP models by manually
annotating the presence or absence of each construct in a subset of the
data, and evaluated each model’s performance with the remaining
data. Although the NLP models for detecting social distress, spiritual
pain, severe pain, dyspnea, and nausea demonstrated high accuracy,
those for detecting severe insomnia and anxiety demonstrated moder-
ate accuracy. Although the investigators found that the positive predic-
tive values of the NLP models for detecting social distress and spiritual
pain were poor, this finding may reflect the quality of the data
recorded. One adage that applies to big data analyses is “garbage in,
garbage out,” which refers to the importance of training computational
models on high-quality data. Nevertheless, NLP is approximately
10 times faster than manual coding and may identify information that
human analysts overlook.21 The development and refinement of addi-
tional computational methods in coordination with efforts to promote
standardization in clinical documentation will facilitate oncology nurse
scientists’ ability to leverage unstructured EHR data.

Patient-Generated Health Data and Remote Monitoring

Technological advancements have enabled more powerful and
portable personal electronic devices that consumers can wear and/or
interact with, producing vast amounts of data. Smartphones, mobile
health applications (apps), and wearable devices have increased the
frequency, amount, and types of PGHD available. In contrast to clini-
cal data, PGHD allow patients to be responsible for capturing, record-
ing, and deciding whether and with whom to share their data.7

PGHD allows a continuous tracing of consumer-specific entries,
such as those related to location, physical activity, heart rate, blood
pressure, glucose, temperature, sleep patterns, or adherence to medi-
cation, among others. Remote longitudinal and real-time monitoring
can standardize the collection of data across patients and clinics and
decrease information gaps (eg, recent changes in a patient’s condi-
tion; symptoms that prompt a change in the care plan).22 In addition,
remote digital methods may facilitate retention of and access to a
wider and more diverse group of participants, reducing costs and
time to create targeted cohort groups, in comparison to traditional
clinical studies.23,24 Furthermore, PGHD may offer cost-effective
strategies by optimizing cancer care outside of the clinic.25 In clinical
research, detailed information about the time of collection, amount,
or combination of data sources can help to standardize and capture
more precise and frequent data to understand mechanisms and toxic-
ities of cancer treatments and improve the efficiency of oncology
clinical trials.26,27 Moreover, predictive models of disease states can
be tested and health-promotion interventions created. The use of
PGHD enables a shift from provider-driven to patient-led activities
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that enables self-monitoring and self-management and fosters
patient engagement.28 However, additional research is needed on
the legal, ethical, feasibility, and modeling issues related to the acqui-
sition and use of PGHD.

Wearable Health Devices (passive reporting)
Awearable is a device with a sensor that can collect health-related

data remotely with the advantage of minimizing discomfort and
interference with normal human activities. This approach makes it
possible to monitor patients in their own environment.29 Wearable
and remote patient monitoring devices may be fastened to the wrist,
upper arm, waist, hip, or other body parts. These devices can provide
biometric data, including heart rate, electrocardiogram, respiratory
rate, blood oxygen saturation, blood glucose, sleep pattern, and body
temperature. The collection of data from wearable and remote
patient-monitoring devices can take place in real time or during
scheduled data transfers. In this sense, these devices combine the
three main Vs of big data: large amounts of data (volume) that are
collected in real time or at high frequency (velocity) from a wide
range of data sources (variety).

In the oncology setting, several examples exist of the use of wear-
able and remote patient-monitoring devices to improve patient out-
comes during and after cancer treatment. As part of a European
project titled Integrated Network for Completely Assisted Senior Citi-
zens’ Autonomy (inCASA),30 a home-based platform was used to
monitor real-time symptoms in patients receiving chronomodulated
chemotherapy at home.31 Circadian rest-activity rhythm and sleep
were measured with a wrist accelerometer, body weight changes
with a dedicated scale, and symptom information with a question-
naire completed on an interactive electronic screen. Evidence for the
acceptability of this approach included 5,891 data points collected
over 364 patient-days out of the 8,736 expected (67.4%), with a
median daily adherence of 73%. This approach allowed a day-to-day
multidimensional and accurate evaluation of each patient’s response
to the treatment and helped document the safety of chronomodu-
lated triplet chemotherapy delivery in the patient’s home.

In contrast, other studies reported suboptimal adherence to wear-
able health devices. The OncoWatch 1.0 study investigated the feasi-
bility of using smartwatches to monitor heart rate and physical
activity in patients with head and neck cancer who were receiving
radiotherapy.32 Only 31% of patients adhered to the study protocol
that entailed wearing a smartwatch for 12 hours per day during and
for 2 weeks after radiotherapy. The investigators proposed that the
task of charging the watch and not being able to use the watch for
personal purposes led to low adherence.

Another example of the use of sensors for home-based cancer
symptom management is Behavioral and Environmental Sensing and
Intervention for Cancer (BESI-C).33 In this study, dyads of patients
with cancer and their primary caregivers were followed to monitor
cancer pain and distress at home. Environmental sensors assessed
the home context (eg, light and temperature), and Bluetooth beacons
located dyad positions. Both patients and caregivers wore smart-
watches to record and characterize pain events. This study intro-
duced a new approach to monitoring and mitigating the escalation of
cancer pain and distress by controlling environmental and contextual
factors at home. Participants reported that the intervention was
meaningful and not burdensome.

Patient-reported data (active reporting)
Patient-reported outcomes (PROs) are systematic ways of measur-

ing patients’ subjective views about the impact of their disease and
its treatment. From a value-based care point of view, collecting PRO
data could help to evaluate, monitor, and improve provider and set-
ting performance, or establish standards and benchmarks to measure
the effectiveness of a health system.34 One study35 identified three
potential uses of “Big PRO” data: (1) to guide individual care through
real-time monitoring; (2) to develop population-level prognostic
models to predict patients most likely to benefit from an intervention
and to identify those who are a priority for care; and (3) to enrich
observational research in real-world trials. Despite their established
use in clinical trials, PROs are not universally collected in real-world
clinical settings. One barrier to the integration of PROs into routine
care is that many EHRs are not designed to meaningfully display and
assist clinicians to interpret PRO data.36,37 For nursing, the lack of
PROs in EHRs limits the extent to which nursing interventions such
as patient education, symptom evaluation, and symptom manage-
ment can be measured and evaluated.38

In 2013, the Patient-Centered Outcomes Research Institute
(PCORI) in the United States launched PCORnet, the National Patient-
Centered Clinical Research Network, a major initiative to create an
effective and sustainable infrastructure to support researchers in
learning from clinical and patient-reported outcomes in large obser-
vational studies.39 Another example is the Dutch population-based
Patient-Reported Outcomes Following Initial treatment and Long-
Term Evaluation of Survivorship (PROFILES) registry, which combines
longitudinal PRO measures, objective measures, and cancer registry,
ambulatory, and pharmacy data.40

In France, the CANcer TOxicities (CANTO) longitudinal cohort study
(NCT01993498) is developing a database of chronic treatment-related
toxicities in 14,750 women with stage I to III breast cancer.41 The aims
of the study are to quantify the impact of treatment toxicities and to
generate predictors of chronic toxicity in patients with nonmetastatic
breast cancer. CANTO collects PROs (ie, quality of life, psychological,
behavioral), as well as clinical, treatment, toxicity, socioeconomic,
and biologic data. These initiatives will allow the full integration of
PROs and information related to their impact into EHRs, claims data-
bases, and other sources of big health data. In addition, initiatives such
those undertaken by the Organization for Economic Cooperation and
Development42 and the International Consortium for Health Outcomes
Measurement43 aim to support and develop a coherent and compre-
hensive approach to standardizing and implementing the systematic
collection of PRO data internationally.

Large Public Datasets

A major challenge faced by researchers is the acquisition of high-
quality data. Prospective data collection can be an expensive process
that is time intensive for both researchers and patients. Due to fund-
ing constraints, researchers must make difficult decisions about what
types of data to collect, number of assessments, and number of
patients. Furthermore, multiple years pass between the grant writing
process and the beginning of data analysis, which impedes progress
in oncology research. The availability of publicly available datasets
with large samples (eg, >1000 participants) that acquire data longi-
tudinally and include various types of data (eg, symptom severity,
gene expression) can accelerate oncology research. To improve the
management of data produced by studies funded by the National
Institutes of Health (NIH) in the United States and increase the
responsible sharing of these data, the Policy for Data Management
and Sharing44 was enacted requiring that researchers of NIH-funded
studies share their data with a quality data repository (eg, Database
of Genotypes and Phenotypes [dbGaP]). Given that this policy went
into effect as of January 2023, data within publicly accessible data
repositories will expand in volume exponentially. In addition to the
databases previously described (ie, PROFILES, CANTO), the next sec-
tion of this paper describes five publicly available datasets with a
high variety, velocity, and volume of data that oncology nurse scien-
tists can access to explore a variety of research questions.

National biobanks
The United Kingdom (UK) Biobank is a biomedical database com-

posed of growing volumes of a variety of data used to identify the
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underlying causes (eg, environmental, genetic) of various diseases.
Recruitment of more than 500,000 UK citizens took place between
2006 and 2010, and the study continues to prospectively collect data
on all living participants.45 The target age for recruitment was 40 to
69 years because this age period is associated with increased devel-
opment of various conditions, including cancer. Participants were
required to be registered with the universal health care system of the
UK, provide consent for long-term follow-up, and allow for study
access to their health records. Therefore, detailed health records on
cancer and death registry data and inpatient and primary care
records are updated annually and are available on all participants.46

Data available for analyses include detailed questionnaires on health,
lifestyle, and exposures; physical measures and accelerometer data;
whole genome and exome sequencing on all participants; blood,
urine, and saliva for proteomic, metabolomic, and telomere analyses;
and magnetic resonance imaging of the brain, heart, and full body.
Access to this rich resource is available to the international scientific
community through application.

The NIH launched the All of Us Research Program in 2015, recog-
nizing that a “one size fits all” policy for disease prevention and treat-
ment may not be effective for every person.47 All of Us proposes that
to determine the specific risk factors for various diseases and to
develop individualized treatments, the influence of one’s environ-
ment, lifestyle, family history, and genetic makeup on disease devel-
opment and treatment efficacy must be evaluated. Acknowledging
the historic absence and exclusion of people from racial and ethnic
minority communities, rural communities, and lower socioeconomic
status in biomedical research,48 All of Us is committed to the recruit-
ment of participants who reflect the diversity of the United States. To
date, All of Us is more than halfway to its goal of recruiting 1 million
participants and plans to collect additional data over time. Types of
data being collected include patient-reported surveys on one’s envi-
ronment, lifestyle, and other social determinants of health; EHR data;
physical measures; blood, urine, and saliva samples; and digital
health data. While recruitment and data collection are ongoing,
current deidentified data can be accessed on three tiers: Public Tier
(ie, view data snapshots, no registration required), Registered Tier
(ie, includes data from EHRs and surveys, registration required), and
Controlled Tier (ie, genomic data, registration and prior approval
required).

Using cross-sectional data from 14,127 participants in the All of Us
Research Program, symptom phenotypes in participants diagnosed
with one or more chronic conditions (ie, cancer, chronic obstructive
pulmonary disease, heart failure, and/or type 2 diabetes mellitus)
and risk factors that predicted membership in these symptom pheno-
type groups were evaluated.49 Cohort Builder within the All of Us
Researcher Workbench was used to identify study participants for
analysis. Eligible participants were required to have one or more of
the prespecified chronic conditions and complete response data on
fatigue, emotional distress, and pain items on the Overall Health Sur-
vey that was collected after diagnosis. Using hierarchical cluster anal-
ysis, four distinct symptom phenotypes were identified (ie, mild
symptoms, severe emotional distress, severe pain, severe symptoms).
Participants who forwent or delayed medical care or rated their men-
tal or physical health as poor were more likely to belong to the severe
emotional distress, pain, or symptom phenotypes.

National survey data
Another type of large, publicly available data that researchers can

use is data compiled from national or international surveys. For
example, in an effort to improve patient-centered care, health care
systems and governments are increasingly using large-scale, popula-
tion-wide, patient-reported surveys to examine patients’ experiences
across the cancer-care continuum. These surveys provide a perspec-
tive on the aspects of cancer care that patients find most important.
Notably, patient-reported experiences complement data on health
outcomes (eg, treatment effectiveness, mortality), which together
provide a more holistic picture of the quality of health care.50

In the United States, the Consumer Assessment of Healthcare Pro-
viders and Systems Cancer Care Survey examines patient experiences
in the context of their interactions with various clinicians and staff
(eg, communication, perceived respectfulness of staff), experiences
with health care facilities (eg, care coordination, timeliness of
appointments), and perception of overall cancer care.51 Using a simi-
lar survey, the UK uses the Cancer Patient Experience Survey to assess
changes in cancer care and as a tool to inform quality improvement.52

The Patient-Reported Indicator Survey (PaRIS) of People Living with
Chronic Conditions measures both patient-reported experiences (eg,
care coordination, wait times) and PROs (eg, quality of life, physical
functioning) in adults living with one or more chronic conditions.42

Because PaRIS is an international survey, researchers and institutions
can compare data within and across countries. Researchers have used
data generated from large-scale patient-experience surveys to exam-
ine factors associated with patient care experiences in older patients
with hematologic malignancies,53 associations between having a bet-
ter care experience with a clinical nurse specialist and overall sur-
vival in patients with heterogeneous types of cancer,54 and variations
in patient experiences with cancer care by type of cancer in patients
with heterogeneous types of cancer.55

Social Media

Worldwide, an estimated 4.74 billion people use social media.56

Social media platforms allow users to engage with each other and share
user-generated content.57 The most widely used social media platforms
include YouTube, Facebook, and Twitter.58 Social media may be used
by individuals to exchange social, emotional, and practical support
related to a health condition or to find and share health information.59

To date, investigators have used social media to recruit research partici-
pants rather than as a source of research data. However, investigators
may face several challenges related to participant misrepresentation
when they use social media platforms for recruitment.60 Investigators
who analyze content that social media users share publicly may avoid
these challenges. Although user-generated social media content may
shed light on the experiences of people with cancer and other condi-
tions, the unstructured nature of this content has limited the extent to
which it has been formally analyzed.

Online discussion forums represent an especially promising
source of high-velocity unstructured health data. In a study that
aimed to develop an automated model to classify the needs
expressed by patients and caregivers online,61 853 messages shared
in an online health community for people with ovarian cancer and
their caregivers were analyzed. First, messages that referenced physi-
cal, psychological, social, and information needs were manually
annotated. Next, a machine learning model that used a “bag of
words” representation was built, using the combination and fre-
quency of the words in each message to predict the needs expressed
in each message. The resultant classification model was able to iden-
tify different types of needs with a high level of accuracy. These find-
ings suggest that novel computational methods such as machine
learning are a feasible approach to use to analyze large amounts of
unstructured user-generated data.

Omics

To determine the complex mechanisms that underlie common
symptoms in patients with cancer, oncology nurse scientists are
increasingly incorporating omics approaches to their research. The
various types of omics data can be conceptualized as levels of biologi-
cal data (eg, genomics, transcriptomics, proteomics). Given that each
type of omics data provides valuable and unique insights into the
molecular underpinnings of various conditions, researchers may
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select one or more types of omics data for their analyses based on
their research questions and/or hypotheses.62 For example, epige-
nomics data (eg, DNA methylation) can be used to examine linkages
between social determinants of health and symptom or health out-
comes.63 Findings from these studies have the potential to identify
biomarkers of disease or symptoms and lead to the development of
tailored and targeted interventions.

For example, an interdisciplinary team of oncology nurse and
physician researchers, bioinformaticians, and molecular geneticists
integrated a variety of high-volume data types to identify a potential
target for intervention in breast cancer survivors with paclitaxel-
induced peripheral neuropathy. In their first study,64 a transcrip-
tome-wide differential gene expression analysis (11,487 genes) was
performed between breast cancer survivors who did (n=25) and did
not (n=25) develop paclitaxel-induced peripheral neuropathy as a
result of paclitaxel administration. With the use of pathway impact
analysis, 53 significantly perturbed pathways were identified
between the survivor groups. In the second study,65 the authors fur-
ther interrogated the hypoxia-inducible factor 1 (HIF-1) signaling
pathway that was identified in their previous analysis using both
transcriptomic and epigenomic data. Of the 100 genes in the HIF-1
signaling pathway, eight were found to be differentially expressed
and methylated between the survivor groups. Next, these eight genes
were evaluated in preclinical models of neuropathic pain using pub-
licly available datasets from the National Center for Biotechnology
Information Gene Expression Omnibus66 (ncbi.nlm.nih.gov/geo/). Dif-
ferential expression and methylation of the mitogen-activated pro-
tein kinase I interacting serine/threonine kinase I gene was to be
found associated with neuropathic pain in both breast cancer survi-
vors with paclitaxel-induced neuropathy and preclinical models of
neuropathic pain. Taken together, these findings highlight the
strengths of interdisciplinary collaboration and use of multiple types
of data sources (eg, omics, preclinical) and suggest a potential target
for intervention.

Skills Needed to Harness Big Data

Given that big data is increasingly being used to inform clinical
practice, it is imperative that nurse scientists have the requisite
knowledge and skills to use these data. All nurses should be taught
the definition, characteristics, applications, and limitations of big
data.67 Nurse scientists who intend to collect and analyze big data
should pursue training in the computational methods described in
Papachristou et al’s commentary on big data analytics in this Big Data
Special Issue. A nonexhaustive list of educational opportunities for
nurse scientists who wish to pursue training in the collection or anal-
ysis of big data is provided in Table 1. In addition, nurses in all roles
should be skilled at interdisciplinary collaboration. Data scientists,
bioinformaticians, and computer scientists have the expertise to sup-
port nurses to extract, organize, and analyze large datasets. In turn,
nurses provide the holistic perspectives required to interpret and act
on the results of these analyses to improve the well-being of individ-
uals, families, and communities.9

Ethical Considerations with Big Data

Informed Consent

Informed consent in the context of big data is a subject of signifi-
cant ethical discourse that is centered on concerns about participant
autonomy.68-70 For example, participants who consent to have their
blood collected for a genome-wide association study may not antici-
pate the discovery of secondary findings related to a pathogenic gene
variant, such as for BRCA1 or BRCA2. In addition, they may not be fully
prepared to share this information with relatives or future offspring.
While a participant may provide a specimen for a candidate gene
association study of inflammatory markers, in a case where broad
consent is obtained, this specimen may be used for future research
(eg, genome-wide study of pathogenic variants). These considera-
tions must be included in the informed consent process to ensure
autonomy is upheld. For more detailed information on broad consent
in the context of omics research, refer to the excellent review by Wil-
liams and Anderson.71

In terms of informed consent for studies using social media data,
individuals grant specific permissions to social media platforms dur-
ing registration. However, these permissions are not knowingly
extended to recruitment and data collection for research.72,73 There-
fore, researchers need to identify their presence in both public and
private social media groups and be transparent in their intentions
with potential and recruited participants. In addition, given that
assurances of anonymity in social media research cannot be prom-
ised, strict procedures to strengthen confidentiality must be made
throughout the research process.73,74

Duty to Report or Intervene

When accruing, analyzing, or mining big data, procedures must be
in place to respond to or intervene on issues of participant safety or to
address incidental findings. These considerations are important given
that the methods for big data collection and analysis may not facili-
tate the real-time evaluation of individuals’ responses. For example,
in clinical trials, the collection of PRO data on emotional distress or
pain may identify individuals experiencing severe levels of distress
or pain that necessitate a timely response. To identify these patients
in real-time, researchers can implement specific PRO thresholds that
trigger an alert, identify the individual, and allow researchers or clini-
cians to intervene in a timely manner.75 In terms of omics data, sec-
ondary findings, such as pathogenic or expected pathogenic variants,
may be identified.76 For example, findings from a study that con-
ducted whole-exome sequencing for 49,960 participants in the UK
Biobank reported that 2.7% of participants had a pathogenic or likely
pathogenic variant as defined by the American College of Medical
Genetics and Genomics Secondary Findings Guidelines.77 Under the
UK Biobank informed consent, these results cannot be shared with
participants or their clinicians. In the All of Us Research Program
that includes an evaluation of 59 pathogenic or expected pathogenic
variants, participants are given the option during the informed con-
sent process to receive this information.78 In addition, if medically
actionable variants are identified, participants will receive genetic
counseling.

Security and Privacy

Given the depth and breadth of big data, security of these data is a
significant issue that will only magnify as data accrues. For example,
data breaches in healthcare systems containing millions of EHRs are
not uncommon.79 Nurse engagement in all steps of the research pro-
cess is required to ensure that safeguards are in place to protect
patient data.

Specific security and privacy concerns apply to data collected from
sensors and wearable devices. When third-party technologies are
used to collect research data, the amount and type of data that device
manufacturers collect from participants are often beyond the investi-
gator’s control.80 Both breaches in data security and increased sur-
veillance have the potential to harm participants by violating their
right to privacy. Investigators who collect data using sensors and
wearable devices can support participants’ right to privacy by includ-
ing information about how data may be used by third parties in the
informed consent document.80

Engagement in policy development to ensure patient protections
is an important role for oncology nurse scientists who use big data.81

In addition, nurse clinicians and researchers must have a keen



TABLE 1
Educational resources and training opportunities for nurses on use of big data.

Content Area Name Description Location of Course/Training

Data Science Post-
doctoral
Fellowship

Big Data Scientist Training
Enhancement Program

� Two-year fellowship offered through the National Cancer
Institute and Veterans Health Administration of the USA

� Goal is to leverage data science to advance cancer research
through training, clinical guidance, and use of the VA health
data infrastructure

Onsite at one of four VA medical centers
Applicants must be a citizen of the USA; have

proficiency in at least one programming lan-
guage, and have experience in bioinformatics,
modeling, or management of large datasets

� EMR
� Statistical

Methods

Electronic Medical Records Boot
Camp: Biostatistical Methods
for Analyzing EMR Data

� Two-day intensive boot camp featuring hands-on training and
seminars

� Provides an overview of electronic health data opportunities,
statistical challenges, and latest techniques

Columbia University SHARP Training Program,
New York, NY, USA

Offered online

� Omics Big Data Training for Cancer
Research

� 10-day intensive workshop geared toward cancer researchers
� Workshop covers managing, visualizing, analyzing, and inte-

grating various types of omics data

Purdue University, West Lafayette, IN, USA
Offered online or in-person

� Genomics Computational Genomics � Seven-day intensive course focused on the theory and practice
of algorithms in computational biology

� Course topics include statistical considerations in the design
and analysis of genomic experiments

Cold Springs Harbor Laboratory
Offered online

� Genomics Quantitative Genomics Training:
Methods and tools for whole-
genome and transcriptome
analyses

� Two-day intensive boot camp featuring hands-on training and
seminars

� Provides an overview of concepts, methods, and tools for
whole-genome and transcriptome analyses in human health
studies

Columbia University SHARP Training Program,
New York, NY, USA

Offered online

� Epigenetics Epigenetics Boot Camp: Planning
and Analyzing DNA Methyla-
tion Studies for Human
Populations

� Two-day intensive boot camp featuring hands-on training and
seminars

� Provides overview of concepts, techniques, and data analysis
methods utilized in human epigenetic studies with a focus on
DNAmethylation array

Columbia University SHARP Training Program,
New York, NY, USA

Offered online

� Microbiome Microbiome Data Analytics Boot
Camp: Planning, generating,
and analyzing 16s rRNA gene
sequencing surveys

� Two-day intensive boot camp featuring hands-on training and
seminars

� Provides an overview of 16s rRNA gene sequencing surveys
including planning, generating, and analyzing sequencing
datasets

Columbia University SHARP Training Program,
New York, NY, USA

Offered online

� Microbiome Strategies and Techniques for
Analyzing Microbial Popula-
tion Structures (STAMPS)

� 10-day intensive course providing interdisciplinary training in
bioinformatics and statistics

� Topics include experimental design, assembly and annotation
of shotgun metagenomic data, and statistical methods

Marine Biological Laboratory, Woods Hole, MA,
USA

Offered in-person

� Statistical
methods

� R programming
� Omics

University of Washington Biosta-
tistics Summer Institute in Sta-
tistical Genomics (SISG)

� SISG is divided into several modules scheduled throughout
summer

� Provides instruction on the modern methods of statistical
analysis

University of Washington, Seattle, WA, USA
Offered in-person

� Statistical
methods

University of Washington Sum-
mer Institute in Statistics for
Big Data

� Four modules provided over 2 to 3 days
� Introduces statistical techniques for the analysis of biological

big data

University of Washington, Seattle, WA, USA
Offered online

� Machine
learning

Machine Learning Boot Camp:
Analyzing Biomedical and
Health Data

� Two-day intensive boot camp featuring hands-on training and
seminars

� Provides overview of statistical concepts, techniques, and data
analysis methods for biomedical research

Columbia University SHARP Training Program,
New York, NY, USA

Offered in-person or online

� Machine
learning

Introduction to Machine Learn-
ing for Epidemiologists

� Course is a month-long, 30-hour, self-paced digital course
� Provides a broad exposure to machine learning and its practi-

cal applications within epidemiology

episummer, Columbia University, New York, NY,
USA

Offered online

� R programming
� Python
� Machine

Learning
� Text Mining

Bioinformatics Course Series and
Workshops offered through
FAES Academic Programs at
the National Institutes of
Health

� Courses are offered online in an asynchronous format
� Workshops are offered online in a synchronous format

FAES Academic Programs, Bethesda, MD, USA
Offered online

� R programming
� Bioinformatics
� Machine

learning

Coursera (coursera.org) � Self-paced online courses covering a variety of topics and
levels of proficiency

Offered online

� R programming
� Python
� Machine

learning

DataCamp (datacamp.com) � Self-paced online courses covering a variety of topics and
levels of proficiency

Offered online

Abbreviations: EMR = electronic medical record, FAES = Foundation for Advanced Education in the Sciences, SHARP = Skills for Health and Research Professionals, SISG = Summer
Institute in Statistical Genomics, USA = United States of America, VA = Veterans Affairs
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knowledge of the policies that regulate big data and the limitations of
these policies to ensure that all facets of the polices are adhered to
and to serve as a resource to patients. One example of policy that
seeks to regulate big data is the General Data Protection Regulation
of the European Union. Effective since 2018, this law restricts how
any entity, within or outside of the European Union, may handle or
process personal data of citizens or residents of the European
Union.82 Reinforced with steep fines, this law outlines the rights of
the data subject (eg, right to restriction of processing), rules of con-
sent, conditions when personal data may be processed, responsibili-
ties of data controllers and processors, and expectations for data
protection.

In terms of genetic data, the Genetic Information and Nondis-
crimination Act (GINA) was passed in the United States to protect
individuals who provide their genetic information for research
studies from the potential for genetic discrimination in terms of
employment and health insurance.83 Specifically, employers can-
not discriminate in terms of hiring or firing an individual based on
their genetic information and cannot request this information
from employees. In addition, health insurers cannot deny coverage
or change insurance rates based on an individual’s genetic infor-
mation. Genetic information in these instances extend beyond the
individual and include family members. However, GINA does not
protect individuals from genetic discrimination in terms of life
insurance, disability insurance, long-term care insurance, or other
uses of genetic information.84 Furthermore, GINA only applies to
individuals who have not been diagnosed with a medical condition
associated with their genetic makeup. Therefore, this law does not
apply to cancer survivors. Similar laws were implemented in Can-
ada (ie, the Genetic Non-Discrimination Act)85 and Germany (ie,
German Human Genetic Examination Act).86 For ongoing discus-
sion on the ethical, legal, and social implications of genomics
research, refer to the review by Hammer.87

Underrepresentation in Big Data

As with other types of research, the underrepresentation of indi-
viduals from minoritized racial, ethnic, sexual, and gender groups in
big data delays progress toward precision health74 and can lead to
harmful study findings and/or interpretation. For example, in a study
that examined the ancestral population diversity in two public data
sources from the NIH (ie, Genome-Wide Association Study Catalog,
dbGaP), African, Latin American, and Asian ancestral populations
were significantly underrepresented.88 In genomic research, under-
representation of these ancestral populations in diverse datasets may
hinder the identification of gene�disease associations that are
uncommon in European ancestral populations, lead to the identifica-
tion of incorrect associations, and limit the generalizability of find-
ings in the clinical setting.

Underrepresentation in big data is particularly problematic when
these data are used to train machine learning models. For example,
lack of racial and ethnic diversity in publicly available radiology data-
sets has limited the ability of artificial intelligence programs to cor-
rectly identify breast lesions in patients of color.89,90 To address this
issue, a team of researchers from Emory University in the United
States developed the EMory BrEast imaging Dataset (EMBED), which
includes detailed demographic, lesion, and pathological data on a
diverse sample of nearly 116,000 patients.90 The researchers hypoth-
esize that this diverse dataset will allow for the “development and
validation of deep learning models for breast cancer screening that
perform equally across patient demographic characteristics and
reduce disparities in health care” (p. 7).90 Importantly, underrepre-
sentation is not the only source of potential bias in research that uses
big data.91,92 Investigators have a responsibility to familiarize them-
selves with the principles of algorithmic fairness and the potential
for latent biases to influence the results of big data studies.
Future Directions and Conclusion

The authors summarized the state of the science of big data in
oncology nursing research by describing common sources of big data,
reviewing access considerations to these data sources, and providing
exemplars on how these sources can be used to examine research
questions relevant to oncology nursing research. While the emer-
gence of big data and advances in analytic approaches provide new
and exciting opportunities to advance oncology nursing science, they
pose several challenges for nurse clinicians and researchers. For nurse
clinicians, these challenges may include the facilitation of data collec-
tion from remote devices, staying current of rapidly evolving geno-
mic tests to provide patient education and support,87 and translating
findings from big data analyses into practice. Nurse researchers
require education and training to develop research questions using
and surmount challenges associated with rapidly evolving data ana-
lytic methods. For both nurse clinicians and researchers, ethical chal-
lenges associated with big data are ongoing and are likely to become
more prominent with the increasingly ubiquitous nature of passive
data collection. Common to each of these challenges is the need for
education. As stated previously, all nurses need to understand big
data, both its applications and limitations. Nursing programs need to
provide courses on big data at all levels that include discussions of
ethics and statistical methods. Nurses who are trained in big data and
advanced computational methods will be poised to contribute to
guidelines and policies that preserve the rights of human research
participants. Big data has the potential to provide a current, compre-
hensive, and holistic representation of the patient’s experience. With
their unique focus on the interplay between the whole person, the
environment, and health, nurses bring an indispensable perspective
to the interpretation and application of big data research findings.
Using these approaches, oncology nurses will stay on the forefront of
advancements in big data approaches and harness big data to
improve the outcomes of patients with cancer.
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