An efficient computational approach for prior sensitivity analysis and cross-validation.

Details

Serval ID
serval:BIB_1E8C1F6C8DD2
Type
Article: article from journal or magazin.
Collection
Publications
Title
An efficient computational approach for prior sensitivity analysis and cross-validation.
Journal
Canadian Journal of Statistics-Revue Canadienne De Statistique
Author(s)
Bornn L., Doucet A., Gottardo R.
ISSN
0319-5724
Publication state
Published
Issued date
03/2010
Volume
38
Number
1
Pages
47-64
Language
english
Abstract
Prior sensitivity analysis and cross-validation are important tools in Bayesian statistics. However, due to the computational expense of implementing existing methods, these techniques are rarely used. In this paper, the authors show how it is possible to use sequential Monte Carlo methods to create an efficient and automated algorithm to perform these tasks. They apply the algorithm to the computation of regularization path plots and to assess the sensitivity of the tuning parameter in g-prior model selection. They then demonstrate the algorithm in a cross-validation context and use it to select the shrinkage parameter in Bayesian regression. The Canadian Journal of Statistics 38: 47-64; 2010 (c) 2010 Statistical Society of Canada
Keywords
cross-validation, g-prior, markov chain monte carlo, penalized regression, prior sensitivity, regularization path plot, sequential monte carlo, variable selection, monte-carlo methods, local sensitivity
Web of science
Create date
28/02/2022 11:45
Last modification date
23/03/2024 7:24
Usage data