An efficient computational approach for prior sensitivity analysis and cross-validation.

Détails

ID Serval
serval:BIB_1E8C1F6C8DD2
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
An efficient computational approach for prior sensitivity analysis and cross-validation.
Périodique
Canadian Journal of Statistics-Revue Canadienne De Statistique
Auteur⸱e⸱s
Bornn L., Doucet A., Gottardo R.
ISSN
0319-5724
Statut éditorial
Publié
Date de publication
03/2010
Volume
38
Numéro
1
Pages
47-64
Langue
anglais
Résumé
Prior sensitivity analysis and cross-validation are important tools in Bayesian statistics. However, due to the computational expense of implementing existing methods, these techniques are rarely used. In this paper, the authors show how it is possible to use sequential Monte Carlo methods to create an efficient and automated algorithm to perform these tasks. They apply the algorithm to the computation of regularization path plots and to assess the sensitivity of the tuning parameter in g-prior model selection. They then demonstrate the algorithm in a cross-validation context and use it to select the shrinkage parameter in Bayesian regression. The Canadian Journal of Statistics 38: 47-64; 2010 (c) 2010 Statistical Society of Canada
Mots-clé
cross-validation, g-prior, markov chain monte carlo, penalized regression, prior sensitivity, regularization path plot, sequential monte carlo, variable selection, monte-carlo methods, local sensitivity
Web of science
Création de la notice
28/02/2022 11:45
Dernière modification de la notice
23/03/2024 7:24
Données d'usage