The Statistical Analysis of the Varying Brain.

Détails

Ressource 1Télécharger: Chén et al_brain variability.pdf (3106.45 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
ID Serval
serval:BIB_C6B3B6AA1F8B
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
The Statistical Analysis of the Varying Brain.
Périodique
IEEE Statistical Signal Processing (SSP)
Auteur⸱e⸱s
Chén Oliver Y., Thanh Vũ Duy, Greub Gilbert, Cao Hengyi, He Xingru, Muller Yannick, Petrovas Constantinos, Shou Haochang, Nguyen Viet-Dung, Zhi Bangdong, Perez Laurent, Raisaro Jean-Louis, Nagels Guy, de Vos Maarten, He Wei, Gottardo Raphael, Smart Palie, Munafò Marcus, Pantaleo Giuseppe
Statut éditorial
Publié
Date de publication
02/07/2023
Peer-reviewed
Oui
Langue
anglais
Résumé
We present here a systematical approach to studying the varying brain. We first distinguish different types of brain variability and provide examples for them. Next, we show classical analysis of covariance (ANCOVA) as well as advanced residual analysis via statistical- and deep-learning aim to decompose the total variance of the brain or behaviour data into explainable variance components. Additionally, we discuss innate and acquired brain variability. For varying \textit{big brain data}, we define the \textit{neural law of large numbers} and discuss methods for extracting representations from large-scale, potentially high-dimensional brain data. Finally, we examine the gut-brain axis, an often lurking, yet important, source of brain variability.
Mots-clé
Brain variability, innate variability, acquired variability, Bayesian brain, ANCOVA, residual learning, high-dimensional data, gut-brain axis.
Web of science
Création de la notice
11/01/2024 18:05
Dernière modification de la notice
05/09/2024 9:00
Données d'usage