The Statistical Analysis of the Varying Brain.
Details
Download: Chén et al_brain variability.pdf (3106.45 [Ko])
State: Public
Version: Final published version
License: Not specified
State: Public
Version: Final published version
License: Not specified
Serval ID
serval:BIB_C6B3B6AA1F8B
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
The Statistical Analysis of the Varying Brain.
Journal
IEEE Statistical Signal Processing (SSP)
Publication state
Published
Issued date
02/07/2023
Peer-reviewed
Oui
Language
english
Abstract
We present here a systematical approach to studying the varying brain. We first distinguish different types of brain variability and provide examples for them. Next, we show classical analysis of covariance (ANCOVA) as well as advanced residual analysis via statistical- and deep-learning aim to decompose the total variance of the brain or behaviour data into explainable variance components. Additionally, we discuss innate and acquired brain variability. For varying \textit{big brain data}, we define the \textit{neural law of large numbers} and discuss methods for extracting representations from large-scale, potentially high-dimensional brain data. Finally, we examine the gut-brain axis, an often lurking, yet important, source of brain variability.
Keywords
Brain variability, innate variability, acquired variability, Bayesian brain, ANCOVA, residual learning, high-dimensional data, gut-brain axis.
Web of science
Create date
11/01/2024 18:05
Last modification date
05/09/2024 9:00