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Abstract—We present here a systematical approach to studying
the varying brain. We first distinguish different types of brain
variability and provide examples for them. Next, we show classical
analysis of covariance (ANCOVA) as well as advanced residual
analysis via statistical- and deep-learning aim to decompose the
total variance of the brain or behaviour data into explainable
variance components. Additionally, we discuss innate and acquired
brain variability. For varying big brain data, we define the neural
law of large numbers and discuss methods for extracting rep-
resentations from large-scale, potentially high-dimensional brain
data. Finally, we examine the gut-brain axis, an often lurking, yet
important, source of brain variability.

Index Terms—Brain variability, innate variability, acquired
variability, Bayesian brain, ANCOVA, residual learning, high-
dimensional data, gut-brain axis.

I. PROLOGUE

In On the Origin of Species, Darwin discussed the importance
of variability and argued it is greatest in structures that evolve
fastest [1]. In humans, the brain is the most variable organ [2].
The inspection of cytoarchitecture by Campbell and Brodmann
unveiled the brain’s varying organization and functioning [3],
[4]. The concept of variance introduced by Fisher facilitated
the quantitative enquiry of biological variability [5]. In the
past century, the study of brain variability has uncovered
fresh insights about the brain, mind, and behaviour [6]–[11].
Meanwhile, linking (co)varying neural features with cognitive,
behavioural, and disease outputs has revealed plausible neural
origins of cognition and attention [12], [13] and potential
markers predictive of brain disorders [14], [15].

This piece aims to connect two areas of cardinal, equal
importance: (1) the biological variability of the brain and (2)
the statistical methods useful to study it. To do so, we present
the following topics. i We define different types of brain
variability. ii We explore how to decompose the brain’s total
variance into sensible variance components. iii We argue a
distinction between innate and acquired brain variability. iv
We suggest methods to obtain representations of varying high-
dimensional brain data. v We discuss brain variability due to
the gut-brain axis.

OY Chén is with Centre Hospitalier Universitaire Vaudois (CHUV) and
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We hope our explorations may stir further discussions about
neurobiological underpinnings of brain variability and help
develop reliable and reproducible methods to study it.

II. DEFINING BRAIN VARIABILITY

A powerful way to decipher the varying brain is to see it
as a spatial matrix travelling in time (Figure 1 a). Let yi(v, t)
be the brain data1 measured at area v ∈ {1, . . . , V } at time
1 ≤ t ≤ T from an individual 1 ≤ i ≤ N . Following subject
i’s area v over time, the trajectory {yi(v, 1), . . . , yi(v, T )}
shows temporal variation (top panel of Figure 1 b). Fixing
time t, the distribution {yi(1, t), . . . , yi(V, t)} across areas
depicts spatial variation (each single brain in the top panel
of Figure 1 b). Fixing space v and time t, the distribution
{y1(v, t), . . . , yN (v, t)} presents within-group variation (e.g.,
HC, MCI, and AD groups in Figure 1 b). Finally, patterns
between groups (e.g., male {yM1 (v, t), . . . , yMN1

(v, t)} vs. female
{yF1 (v, t), . . . , yFN2

(v, t)}, or healthy vs. disease) mark the
between-group variation (Figure 1 c-d).

Differentiating brain variability launches specialized brain
studies. Temporal variability: Tracking temporal brain vari-
ability, one gains insights into time-varying neural dynamics
(e.g., the “dynamic core” [18]), neural development, and brain
maturation [16], [19], [20]. Analysing temporal brain variability
for elderlies or patients with neurodegenerative diseases helps
understand the ageing brain [21] and the ailing brain [22].
Additionally, past neural activities help make forecasts about
future activities [23]. Spatial variability: Studying brain signals
co-vary in space helps decrypt how the brain is wired [24],
[25]. Within- and between-group variability: Examining brain
patterns within and across groups, one derives population-level
characteristics [26] and subject-specific information [14]. Po-
tential causal variability: Examining brain patterns co-varying
with stimuli and/or behaviour helps identify neural signatures:
for processing the stimuli [27], predictive of cognition [28], and
intermediating stimuli and behaviour [29].

III. IDENTIFYING AND QUANTIFYING BRAIN VARIABILITY

One way to trace what constitutes brain variability is to
decompose its total variability into parts related to brain-space,
time, individual, age, gender, etc. Here, we present a few ways
to identify, isolate, and quantify variance components.

A. Variance decomposition via ANCOVA

Consider subject i (1 ≤ i ≤ N = 165; 51 HCs and 114
patients with psychosis)’s brain region j (1 ≤ j ≤ J = 13). Let

1We consider the location and types of signals broadly: the former can be
a neuron, a voxel, or a brain parcel; the latter can be the action potentials of
single neurons, BOLD fMRI of voxels, or EEG recordings of electrodes.
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(a) The spatial-temporal brain. An observer is at the centre of a brain matrix at t = 0. Looking around, the observer sees brain
activities across the brain at present. Looking below and above, one perceives past and future brain activities. (b) The developmental
and the degenerating brain. (c) Cortical thickness between males and females. (d) Cortical thickness between disease groups. Data for
top panel of (b) are from [16]. AD data are from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [17]. HC = healthy control
(N = 334); MCI = mild cognitive impairment (N = 591); AD = Alzheimer’s (N = 182).

Fig. 1. Distinguishing types of brain variability.

k (200 ≤ k ≤ 428), l ∈ {HC,Psychosis}, and g ∈ {M,F} be
the subject’s age in months, disease status, and gender, respec-
tively. Each subject is measured at time (visit) t (1 ≤ t ≤ Ti

= 2). Then, one can write the brain data (e.g., mean functional
connectivity of region j) from subject i (with age k, disease
status ℓ, and gender g) measured at time t, or y(j)iklg(t), as:

y
(j)
iklg(t) = µ(j) +

∑
w∈

{i,t,k,ℓ,g}

β{j}
w +

∑
u̸=v
u,v∈

{i,t,k,ℓ,g}

α(j)
u,v

+
∑

a̸=b,a̸=c,b̸=c
a,b,c∈

{i,t,k,ℓ,g}

γ
(j)
a,b,c + ϵ

(j)
iklg(t)

where, for area j, µ(j) is the population mean, β(j)
i , β(j)

t β
(j)
k ,

β
(j)
l , β(j)

g are the main-effects due to individual i, time t, age
k, disease l, and gender g; α

(j)
u,v’s are two-way interactions;

γ
(j)
a,b,c’s are three-way interactions (interactions beyond three-

way is usually very small [30]); ϵ(j)iklg(t) is the residual.
The sum of squared terms of the ANCOVA can then be

used to analyze how the main effects and interactions may
contribution to the total variance (see Figure 2).

B. Further variance decomposition on the residuals

The residuals
{
ϵ
(j)
iklg(t)

}
still contain unexplained infor-

mation. Extending the ANCOVA model to a general form,
one can further study the residual. Formally, Y = Xβ +
ϵ, where ϵ is the residual following MVN(0,Σ), Σ =
blockdiag{V1, . . . , VN}, and Vi models the within-subject cor-
relation, for 1 ≤ i ≤ N . The model is relatively general: if
Y is the brain data, X can incorporate individual, temporal,
spatial, interaction, and covariates; if Y is measured behaviour,
and one wants to study how brain signals affect Y while
controlling for other effects, X can include both brain signals
and other factors. One then decomposes ϵ into random effect,

Variance decomposition on functional brain connectivities. The
proportion of residual variance is not shown. Data are from the
Human Connectome Project for Early Psychosis (51 HCs and 114
patients with psychosis; Males/Female/NA: 101/62/2) [31].

Fig. 2. Decomposing the variance of the brain.

serial correlation, and measurement error (Table 2 in [32]), and
interprets the residual variability using further components.

C. Variance decomposition on the residuals via deep learning

If X relates to Y and ϵ in a non-linear, potentially multi-
layer way, one can first employ a deep neural network to map
X into a feature representation space, where X’s represen-
tations are entangled in two subspaces: one with information
explainable for Y and the other explainable for ϵ; one then
separates the two subspaces. For the first subspace, one designs
a network to predict Y as accurately as possible, while forcing
the prediction accuracy of ϵ to chance level, for example, via
a gradient reversal layer [33]. For the second subspace, one
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devises the network to predict ϵ as accurately as possible while
forcing the prediction accuracy of Y to chance level. Formally,
the network learns to minimize the loss function:

L = [L (Y |FY )− L (ϵ|FY )] + [L (ϵ|Fϵ)− L (Y |Fϵ)]

where FY and Fϵ denote the feature subspaces solely explain-
ing for Y and ϵ, respectively.

(1) The innate prior with small variability (i.e., high precision).
The posterior learns mainly from the prior; not much from the
observations. (2) With an innate prior, the centre of the posterior
is close to that of the prior. (3) The acquired prior with large
variability. The posterior learns mainly from the observations. (4)
When a prior has moderate variability, the posterior learns from
the prior and the observations. Adapted from Zeki and Chén [34].

Fig. 3. Two tales of brain variability.

IV. INNATE AND ACQUIRED BRAIN VARIABILITY

The brain’s structure and functioning are, in part, decreed by
innate factors, and, in part, adaptive to the external world [19],
[34]. But why and how do we distinguish innate and acquired
brain variability? We draw insights from three directions.

From biology to neurobiology. One needs to distinguish
innate and acquired brain variability [34]. The former is likely
dictated by the genes and less variable (compared to the latter).
The latter is developed postnatally, due to environment or a
combination of environmental and genetic factors and is more
variable. Next is to find evidence. Colour perception varies little
in humans: perceiving white colour after seeing a white flag is
independent of culture and learning [35]. Perceiving ceasefire
when seeing a white flag, however, depends on postnatal
learning, and is variable across cultures [34].

From statistics to neurobiology. Variance decomposition
(Section III) separates the total variability of the (neural and be-
havioural) phenotypes into genetic, environmental, and (gene-
gene, environment-environment [36], and gene-environment
[37]) interaction parts. A derivative of variance decomposition
is the heritability (H2 := V (G)/V (P )), namely the genetic
variance over the total variance.

From innate and acquired brain variability to the Bayesian
brain. Empirical studies suggest the brains of small animals

[38], mammals [39], and monkeys [40] perform Bayesian
integration and updating. Humans, too, seem to use probability
updating to modify perception [41], cognition [42], and senso-
rimotor function [43]. Incorporating prior knowledge (encoded
in genes and acquired through learning) with new information,
one updates perception and behaviour with higher precision
(i.e., lower variation) [34] (see Figure 3).

V. ANALYSIS OF VARIABILITY USING BIG BRAIN DATA

A. The neural law of large numbers (NLLN)

Empirical analyses of brain connectivity hint the neural law
of large numbers (NLLN) (Figure 4). Formally, we define
the NLLN as the principle where the averaged brain signals
converges asymptotically as the sample size increases. The law
also implies that group-level estimates from small samples may
fluctuate; as the sample size increases, the estimates become
stable and may offer improved population-level insights and
perhaps general principles of the brain.
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Top to bottom are connectivities between paired brain areas,
between a seed (in the posterior cingulate; yellow coulour) and
the rest of the brain, and the whole-brain (400 areas). The results
stabilize asymptotically. Data are from the Human Connectome
Project [44].

Fig. 4. The Neural Law of Large Numbers (NLLN).

B. High-dimensional brain data analysis, challenges and po-
tential solutions

High-dimensional big brain data require special treatments,
particularly when the number of features (p) goes to infinity
faster than, or at the same rate as, the number of sample size
(N ). Under these circumstances, classical statistical theories
collapse. The difficulty, however, can be partially alleviated if
the data have a sparse structure2. One can then deploy feature
selection (e.g., stepwise feature selection and regularization3

2Empirical studies show sparsity in cells, genes, and the brain [45].
3One can use sure independence screening when p grows faster or as fast

as N , or sparse additive models and Bayesian additive regression trees when
the relationship between brain features and the outcome is nonlinear.
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Sources of variability of the brain through the gut-brain axis and causes of possible biases due to the tools used to determine the gut
microbiota composition: an in-exhaustive map. Parts of the figure are drawn using sankeyNetwork and BioRender.

Fig. 5. The spell of the gut-brain axis.

[46]) or transformation (e.g., eigenanalysis or seek a low-
dimensional nonlinear manifold) to discover a sparse or low-
dimensional representation (see [32] for discussions).

Big brain data confront further challenges. (a) Consider p
brain areas. If p is large, signals from some areas may be
spuriously associated with an outcome. Out-of-sample predic-
tion, cross-validation, and repeated sampling test may alleviate
this [47]. (b) Most statistical models require the predictors
to be uncorrelated with the residual. When p is large, some
variables may be coincidentally correlated with the residual
(i.e., incidental endogeneity); see [48] for a potential treatment.
(c) Aggregating datasets of different noise levels may bias
the estimates. One needs suitable pre-processing and aggre-
gation methods (e.g., inverse-variance weighting). (d) High-
dimensional brain data analysis face computational challenges;
many high-dimensional problems are intractable; they may
generate even larger intermediate data. But see treatments (e.g.,
assuming sparsity) above. (e) Data with large sample sizes
may yield small, yet significant, effect sizes. P -values in these
cases may offer little inference value. See [47] for discussions.
(f) Data visualization is critical to exploratory analysis and
post hoc interpretation, but plotting high-dimensional data is
difficult. Instead, one can project high-dimensional data onto
low-dimensional space [49].

VI. A LURKING FACTOR: THE GUT-BRAIN AXIS

Despite growing insights about the potential roots of brain
variability due to genetics, neuro-development, cognition, stim-
ulation, education, environmental exposure, life events, and
innate immunity, one source of brain variability, namely that
due to endogenous microbes, has been little explored.

Recent years, however, have seen an increasing interest in
investigating the links between microbes and the variability of
the brain and the inquiry of the gut-brain axis. Remarkable
beginnings have already been made. Studies have shown that
gut microbiota compositions are associated with (i) psychiatric
disorders, such as depression and compulsive disorders [50], (ii)
neurological diseases, such as Alzheimer-associated memory

impairment, Parkinson’s disease, and multiple sclerosis [51],
and (iii) changes of major physiological functions, such as
appetite, motivation to perform an exercise, and sleep [52].

Although the definitive causal pathways between these fac-
tors have not been fully charted, for some of these conditions,
robust data have provided partial explanations about how gut
microbes affect the brain. For example, gut microbes (Eubac-
terium rectale & Coprococcus eutactus) seem to improve the
exercise performance of mice via producing endocannabinoid
metabolites that indirectly impact the dopamine level in the
brain [52]. Part of the impact of gut microbiota on the brain,
however, was shown to depend on immune interplay with
microbes. Consequently, prebiotics and probiotics as well as im-
munomodulators are now being investigated as possible future
treatments for such psychiatric or neurological impairments.

It is as of yet elusive to precisely pinpoint the impact of
gut microbiota variability on brain physiology and its intrinsic
variability. This is due partly to the inter-individual variability
of the gut microbiota, the intra-individual variability of gut
microbiota over time and at different anatomical locations of the
intestinal tract, the varied methods used to define the gut micro-
biota composition, and the differing effect of a given microbiota
composition on the brain according to genetic predisposition
and immune background. Moreover, various external factors
(e.g., travel, diet, antibiotics, exposure to pets, and gastroin-
testinal disease) may further affect and explain a portion of the
variability of the gut microbiota composition and its impact
on brain functions and, potentially, structure (Figure 5). Future
work needs to identify, isolate, and quantify these entangled
factors and multi-layer pathways of the gut-brain axis.

VII. EPILOGUE

In this piece, we have presented two views about the varying
brain: a biological one and a statistical one. Future studies of
variability will continue to expand our knowledge about the
genetic, neural, and environmental bases of the brain, and how
its consistent and varying structure and functioning interact,
integrate, and shape the constant and adapting humans.
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