A probabilistic graphical model for assessing equivocal evidence
Détails
Télécharger: TaroniGarbolinoBozza_2024.pdf (1321.46 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_4DC93981093B
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
A probabilistic graphical model for assessing equivocal evidence
Périodique
Law, Probability and Risk
ISSN
1470-8396
1470-840X
1470-840X
Statut éditorial
Publié
Date de publication
25/04/2024
Peer-reviewed
Oui
Volume
23
Pages
1-14
Langue
anglais
Résumé
The Bayes’ theorem can be generalized to account for uncertainty on reported evidence. This has an impact on the value of the evidence, making the computation of the Bayes factor more demanding, as discussed by Taroni, Garbolino, and Bozza (2020). Probabilistic graphical models can however represent a suitable tool to assist the scientist in their evaluative task. A Bayesian network is proposed to deal with equivocal evidence and its use is illustrated through examples.
Mots-clé
Bayes’ Theorem, Jeffrey’s Conditionalisation, Bayesian Networks, Probability Kinematics, Bayes Factor, Uncertain Evidence Evaluation.
Open Access
Oui
Financement(s)
Fonds national suisse / 100011_204554
Création de la notice
25/04/2024 13:14
Dernière modification de la notice
26/04/2024 6:11