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Abstract 
The Bayes’ theorem can be generalized to account for uncertainty on reported evidence. This has an impact 
on the value of the evidence, making the computation of the Bayes factor more demanding, as discussed by 
Taroni, Garbolino, and Bozza (2020). Probabilistic graphical models can however represent a suitable tool to 
assist the scientist in their evaluative task. A Bayesian network is proposed to deal with equivocal evidence 
and its use is illustrated through examples.
Keywords: Bayes’ Theorem; Jeffrey’s Conditionalisation; Bayesian Networks; Probability Kinematics; Bayes Factor; 
Uncertain Evidence Evaluation. 

Credibility questions are among the most important in any conceivable context involving 
evidence-based reasoning. (Schum 2009) at p. 211

1. Introduction
In a recent paper (Taroni, Garbolino, and Bozza 2020), it was endorsed and detailed the point 
that the ‘entire edifice of human knowledge rests on probability judgments, not on certainties’ as 
mentioned by Galavotti (1996, at p. 253). This point of view dated back to de Finetti’s pragma-
tism and was extended by Jeffrey in his seminal 1965 first edition book (Jeffrey 1983). It was no-
ticed that the logic for reasoning is given by Bayes’ theorem where the only constraint one has to 
face is to guarantee that the available evidence—upon which one should determine the probabil-
ity of different hypotheses of interest—is judged as certain. In other words, this amounts to say 
that the acquisition of such evidence must be unequivocal. In such a situation, one is faced with 
what is also known as ‘hard evidence’ which is generally defined as the knowledge that some 
state of a variable (e.g. a given scientific feature of interest) definitely occurred, so that informa-
tion arrives in the form of a proposition stating that event, say E, occurred. Unfortunately, the 
judiciary is often faced with situations where a scientist’s degree of belief in the truth of proposi-
tion E, about a feature of a scientific finding, falls short of certainty. One is therefore faced with 
equivocal evidence so often called ‘soft evidence’ that is generally interpreted as evidence of un-
certainty because there is uncertainty about the specific state of a variable and so there is a prob-
ability assignment associated with it. This aspect is strictly related to the doctrine called: no facts 
are known for certain, and experience does not ‘speaks with the voice of an angel and gives you 
new total certainties’ (van Fraassen 1989, p. 320).

Imagine, for the sake of illustration that one is interested in hypothesis H (and its negation �H) 
and that the event E is deemed as relevant for H. However, there is no certainty about the occur-
rence of the event E, and it is reported a probability equal to 0.7 that the event effectively has oc-
curred (as in Dodson (1961)). What is the effect of such uncertain evidence upon the main 
hypotheses of interest, say H and �H? This has been described by Jeffrey (Jeffrey 1983) 

Received: 4 December 2023. Accepted: 4 December 2023 
# The Authors (2024). Published by Oxford University Press.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https:// 
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Law, Probability and Risk, 2024, 23, 1–14 
https://doi.org/10.1093/lpr/mgae003 
Research Article 

D
ow

nloaded from
 https://academ

ic.oup.com
/lpr/article/23/1/m

gae003/7657791 by U
niversité de Lausanne user on 25 April 2024

https://orcid.org/0000-0002-2269-4504


throughout a generalization of Bayes’ theorem known as Jeffrey Conditionalization describing 
the updating mechanism called Probability kinematics.1

Taroni, Garbolino, and Bozza (2020) extended this line of reasoning by developing a general-
ized Bayes factor formula for equivocal (uncertain) evidence. The development takes also advan-
tage of David Schum’s works on cascaded inference where the author modelled situations 
involving the fact that the ‘observation of evidence about an event is not diagnostically equiva-
lent to the observation of the event itself’ (Edwards, Schum, and Winkler 2008). This idea was 
adopted by Thompson, Taroni, and Aitken (2003) dealing with the problem of false association 
in cases involving DNA evidence. More generally, it can be said that Schum’s work relates to the 
assessment of the credibility of evidence and its sources. The inferential steps describing the line 
of reasoning capture the different levels of credibility. Schum reported that: 

Our sensory capacities are limited in various ways, so devices have been designed to extend the 
range of things we can observe. [ … ] No sensing device, human, mechanical, or electric, is infal-
lible. We have natural questions concerning the inherent accuracy of sensing devices, but we 
also recognise that these devices can be influenced and tampered with in various ways. (Schum 
1994, pp. 99–100)

Schum underlines the difference existing between his own approach and that of Jeffrey. He 
wrote (Schum 1994): 

In the Jeffrey situation, [a witness] W provides an assessment of his own credibility as far as his 
observation was concerned. He is uncertain about whether his observation was E or �E, and he 
expresses this uncertainty by means of Pr1 ðEÞ and Pr1ð�EÞ. In [Schum’s development], we make 
an assessment of the credibility of W’s unequivocal testimony by means of [PrðRjEÞ and 
Prð�Rj�EÞ] (at p. 353, notation adapted),

where R denotes the reported testimony about E. The topic of unreliable evidence (e.g. an eye- 
witness may not be 100% reliable) was addressed by Dawid and Mortera (1996) in forensic sce-
narios involving the selection of a suspect through a database search. The authors were inter-
ested in measuring the effect of unreliable evidence on the posterior probability of the hypothesis 
the person of interest is the source of the recovered stain.

Following Jeffrey’s ideas, Taroni, Garbolino, and Bozza (2020) derived an extended formula 
for the Bayes factor computation that also takes equivocal evidence into account (see Equation 
(20) in Taroni, Garbolino, and Bozza (2020)). The novelty of the proposed equation consists in 
the possibility to model the uncertainty about the truth of a given feature of interest, in addition 
to the quantifications of the sensitivity and the specificity of a given analytical method, the ca-
pacity to report correctly the presence of a given feature when that feature does exist, and the ca-
pacity to detect potential false positive association (to not report a given feature when that 
feature does not exist) as presented in Schum’s works.

In order to facilitate both the description of the probabilistic reasoning and the inferential 
computation that would require tedious calculations, a probabilistic graphical model (i.e. a 
Bayesian network) is proposed in this article. Bayesian networks are nowadays largely discussed 
and applied, either in judicial or forensic literature, as inferential and decisional tools. Examples 
can be found, e.g., in Taroni et al. (2014) and Taylor, Samie, and Champod (2019).

The article is structured as follows. Section 2 briefly describes the generalized Bayes’ theorem 
equation (Jeffrey’s conditionalization) and its impact in terms of evaluation of evidence. An ex-
tensive presentation of these arguments can be found in Sections 4 and 8 of Taroni, Garbolino, 
and Bozza (2020). In Section 3, a Bayesian network (BN) capable of handling this generalization 
and avoiding the tedious application of mathematical formulae is presented. Note that some al-
gebraic expressions reported in Section 8 of Taroni, Garbolino, and Bozza (2020) have been 
reworked and adapted in the current article to facilitate the interpretation of the associated BN. 
Three examples of application are presented in Section 4 (Case scenarios 1 and 2 were taken 

1 Probability kinematics or Jeffrey’s conditionalization is a technique to update beliefs based upon uncer-
tain results.

2                                                                                                                                                                   F. Taroni et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/lpr/article/23/1/m
gae003/7657791 by U

niversité de Lausanne user on 25 April 2024



from Taroni, Garbolino, and Bozza (2020) for comparison purposes). Section 5, finally, con-
cludes the article.

2. The generalization of Bayes’ theorem and the Bayes factor for 
equivocal evidence
It is well known that Bayes’ theorem represents the way to reply to the fundamental inferential 
question of how a new piece of evidence should be incorporated into one’s knowledge about 
propositions of interest. As discussed in Taroni, Garbolino, and Bozza (2020), the process of evi-
dence acquisition is modelled as a two-step process in time. At time t0, it is planned to look for 
evidence E because E is believed to be relevant for proposition H. At time t0, the change in de-
gree of belief in H, if it were to be discovered that E were true, may be calculated by use of 
Bayes’ theorem. For the sake of illustration, denote the degrees of belief about an event at time t0 

by Pr0ð�Þ. The Bayes’ theorem is written as 

Pr0ðHjE; IÞ ¼
Pr0ðH;EjIÞ

Pr0ðEjIÞ
¼

Pr0ðEjH; IÞPr0ðHjIÞ
Pr0ðEjIÞ

; (1) 

where letter I denotes the background knowledge.2 Afterwards, at time t1, it is discovered that E 
is true. Denote the degree of belief at time t1 by Pr1ð�Þ: what is the degree of belief in the truth of 
H at time t1, Pr1ðHjIÞ? If it has been learned at time t1 that E is true, then the knowledge that E 
is true has become part of the background knowledge I at time t1; therefore, the overall degree 
of belief in H at time t1 is equal to the degree of belief in H, conditional on E, at time t0: 

Pr1ðHjIÞ ¼ Pr0ðHjE; IÞ: (2) 

This updating process is called Simple conditioning principle where the probability of H at 
time t1 is assessed as the posterior probability (conditional on E) of H at time t0.

The Simple conditioning principle is however not applicable whenever there is uncertainty 
about the truthfulness of E. The four possible scenarios that can be derived from the combina-
tion of two compatible propositions H and E and their negation (H, E; H; �E; �H;E and �H; �E), 
cannot be reduced to H, E and �H;E if there is uncertainty about E. The rule for updating proba-
bilities taking into account uncertain evidence can be derived from the Symmetry Principle 
here below: 

Pr1ðH;EjIÞ
Pr0ðH;EjIÞ

¼
Pr1ðEjIÞ
Pr0ðEjIÞ

: (3) 

This is a direct consequence of the logical assumption that one’s belief on hypothesis H does 
not change at time t1 if conditioned on the same evidence E and background knowledge I avail-
able at time t0, so that Pr1ðHjE; IÞ ¼ Pr0ðHjE; IÞ. It is sufficient to reformulate the latter equality 
as Pr1ðH;EjIÞ=Pr1ðEjIÞ ¼ Pr0ðH;EjIÞ=Pr0ðEjIÞ and a simple algebraic manipulation to obtain 
Equation (3). Note that the letter I will be omitted in what follows for the sake of simplicity.

From (3) the rule for calculating the probabilities of interest, e.g. Pr1ðH;EjIÞ, in presence of 
uncertain evidence is as follows: 

Pr1ðH;EÞ ¼ Pr0ðH;EÞ×
Pr1ðEÞ
Pr0ðEÞ

: (4) 

This allows one to take into account the uncertainty about the truthness of event E and therefore 
of the change in the scientist’s state of information between time t0 and time t1.

2 The background information available to a decision-maker and present in the notation of the a priori probabilities 
on the hypotheses, Pr0ðHjIÞ differs from that available to the forensic scientist who is in charge of the assessment of 
Pr0ðEjH; IÞ. To facilitate mathematical notation, a single letter I is used to characterize both kind of background 
knowledge. For a detailed discussion of this aspect, see Aitken and Nordgaard (2017).
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Clearly, the Symmetry Principle is also valid for �H and �E, and the same property in (3) can be 
invoked to update all involved probabilities whenever faced with uncertain evidence. The proba-
bility of hypothesis H at time t1 can then be obtained in a straightforward manner as: 

Pr1ðHÞ ¼ Pr1ðH;EÞþPr1ðH; �EÞ

¼ Pr0ðH;EÞ
Pr1ðEÞ
Pr0ðEÞ

þPr0ðH; �EÞ
Pr1ð�EÞ
Pr0ð�EÞ

¼ Pr0ðHjEÞPr1ðEÞþPr0ðHj�EÞPr1ð�EÞ:

(5) 

Note that if evidence E is considered as true (i.e. unequivocal evidence), then Pr1ðEÞ ¼ 1 and 
Pr1ð�EÞ ¼ 0. As a consequence, (5) reduces to Bayes’ theorem as in (1) and 

Pr1ðHÞ ¼ Pr0ðHjEÞ ¼
Pr0ðH;EÞ

Pr0ðEÞ
¼

Pr0ðEjHÞPr0ðHÞ
Pr0ðEÞ

:

In this way, it is implicitly assumed that the observation of evidence about an event is equiva-
lent to the observation of the event itself. A distinction must however be made between evidence 
E (e.g. the positivity or negativity characterizing a given analytical procedure) and a reported tes-
timony R about the evidence E. Consider a reported testimony R on the event E: the role of the 
forensic scientist is to assess the value of such scientific reported evidence R. As supported by the 
European Network of Forensic Science Institutes, through its guidelines for the evaluative report 
(ENFSI, 2015),3 the scientist have to report the value of evidence in a probabilistic format called 
Bayes factor.4 The Bayes factor, BF for short, is the primary element in Bayesian methodology 
for comparing hypotheses and it represents the logical measure for hypothesis confirmation 
(Taroni et al. 2021). It is defined as the ratio between the posterior odds and the prior odds and 
it measures the change produced by new evidence in the odds when going from the prior to the 
posterior distribution in favour of one proposition to another.

As a first step, one should be able to ensure the correct distribution of probabilities for the 
four possible scenarios once quantifying Pr1ðHjIÞ, in accordance with the Symmetry Principle. 
Following the same line of reasoning as in (3), the probability Pr1ðH;E;RÞ can be obtained as: 

Pr1ðH;E;RÞ ¼ Pr0ðH;E;RÞ×
Pr1ðRÞ
Pr0ðRÞ

¼ Pr0ðHjEÞPr0ðEjRÞPr1ðRÞ

¼ Pr0ðHÞPr0ðEjHÞPr0ðRjEÞ
Pr1ðRÞ
Pr0ðRÞ

;

where Pr0ðRjEÞ represents the probability to detect correctly a feature when the feature does ex-
ist and Pr0ðRj�EÞ represents the probability to detect a given feature of interest when that feature 
does not exist. This can be defined as a ‘false association’. In a DNA evidence scenario, this rep-
resents a false declaration for a correspondence between profiles coming from a recovered bio-
logical stain and that of a person of interest. Probability Pr0ðRÞ at time t0 is obtained through 
extension of conversation as 

3 The report is available at http://enfsi.eu/documents/forensic-guidelines/.
4 Note that the ENFSI guidelines make reference to a Likelihood ratio (LR) rather than to a Bayes factor (BF). It is 

worth noting that while in the ENFSI context the two terms are equivalent, this is not valid in general. In evaluative set-
tings, when the competing hypotheses are simple (the term ‘simple’ means that there is only one possible value for the 
null and the alternative hypothesis), the Bayes factor reduces to the likelihood ratio of, say Hp to Hd and depends only 
upon the sample data. When composite hypotheses (i.e. there are more possible values for at least one of the tested hy-
potheses) are compared, the BF does not reduce to the LR. In this second scenario, the value of the evidence is not given 
by the data alone, but are weighted by the prior distributions.
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Pr0ðRÞ ¼ Pr0ðRjEÞPr0ðEÞþPr0ðRj�EÞPr0ð�EÞ; (6) 

where

� Pr0ðEÞ ¼ Pr0ðEjHÞPr0ðHÞ þPr0ðEj �HÞPr0ð �HÞ and 
� Pr0ð�EÞ ¼ Pr0ð�EjHÞPr0ðHÞþ Pr0ð�Ej �HÞPr0ð �HÞ. 

The probabilities of all other scenarios can be obtained analogously. The probability of proposi-
tion H given equivocal testimony R becomes 

Pr1ðHÞ ¼ Pr1ðH;E;RÞþ Pr1ðH;E; �RÞþ Pr1ðH; �E;RÞþ Pr1ðH; �E; �RÞ

¼
Pr1ðRÞ
Pr0ðRÞ

Pr0ðHÞfPr0ðEjHÞ½Pr0ðRjEÞ− Pr0ðRj�EÞ� þ Pr0ðRj�EÞg

þ
Pr1ð�RÞ
Pr0ð�RÞ

Pr0ðHÞfPr0ðEjHÞ½Pr0ð�RjEÞ− Pr0ð�Rj�EÞ�þ Pr0ð�Rj�EÞg:

(7) 

The posterior probability of the negation of H, �H, can be obtained analogously. The Bayes factor 
can therefore be obtained as the ratio between the posterior odds and the prior odds, and after 
some manipulation, it takes the following form: 

BF ¼

Pr1ðRÞ
Pr0ðRÞ

fPrðEjHÞ½PrðRjEÞ− PrðRj�EÞ� þPrðRj�EÞg

þ
Pr1ð�RÞ
Pr0ð�RÞ

fPrðEjHÞ½Prð�RjEÞ− Prð�Rj�EÞ� þPrðRj�EÞg

Pr1ðRÞ
Pr0ðRÞ

fPrðEj �HÞ½PrðRjEÞ− PrðRj�EÞ� þPrðRj�EÞg

þ
Pr1ð�RÞ
Pr0ð�RÞ

fPrðEj �HÞ½Prð�RjEÞ− Prð�Rj�EÞ� þPrðRj�EÞg

: (8) 

See Taroni, Garbolino, and Bozza (2020) for an extensive presentation. Note that the expression 
for the BF in (8) simplifies the equation presented in Schum (1994) when the testimony is un-
equivocal, i.e. Pr1ðRÞ ¼ 1.

The application of (8) in practice can however represent a tedious task. A probabilistic graphi-
cal model is therefore proposed in Section 3 and its implementation is illustrated in Section 4.

3 Bayesian networks
3.1 Preliminaries
It is well known that Bayesian networks, BNs for short, have been developed in the field of artifi-
cial intelligence as a framework that assists researchers and practitioners in applying the theory 
of probability to inference problems. Since the late 1980s, BNs have also attracted researchers in 
forensic science (Aitken and Gammerman 1989), and this tendency has considerably intensified 
throughout the past decade (see, e.g., Dawid and Mortera (2021)). Bayesian networks can 
roughly be defined as a pictorial representation of the probabilistic dependencies and influences 
(represented by arcs) among variables (represented by nodes) deemed to be relevant for a partic-
ular probabilistic inferential problem and it is the basis for the probability propagation algo-
rithm that allows exact variable probability updating in such a structure.

BNs are a combination of graph theory, which is used to provide a qualitative model structure, 
and probability theory, which is used to characterize the nature and strength of the relationships 
that reign within a model. More formally, a BN covers the following elements:

Equivocal evidence                                                                                                                                                         5 
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� a finite collection of random variables that are represented by nodes. Each of these nodes has 
either a finite set of mutually exclusive states or may represent a continuous measurement; 

� a set of directed arcs that connect pairs of nodes; 
� the set of variables and the set of directed arcs are combined in such a way that a directed 

acyclic graph is obtained, that is, a graph where no loops are permitted5; 
� node probability tables are associated with each variable of the network. The probability ta-

ble of a variable, say A, that receives entering arcs from variables B1; . . . ;Bn contains condi-
tional probabilities PrðAjB1; . . . ;BnÞ, whereas a variable A with no entering arcs from other 
variables contains unconditional6 probabilities PrðAÞ. It is assumed that personal degrees of 
belief can be assigned to these states. 

The actual state of a variable may not be known with certainty. For example, there may be un-
certainty about the truth or otherwise of the proposition according to which, for example, a 
crime stain has been left by the person of interest. Within a BN, such a proposition is conceptual-
ized in terms of a Boolean node, whose states represent the truth and the falsity of that proposi-
tion. The degree of belief maintained in each of these states is expressed numerically, that is, in 
terms of probabilities. These probabilities are organized in that node’s probability table as de-
scribed above. Note that the arcs in a BN represent probabilistic relationships that correspond to 
a property that a modeller assumes to hold within the context of an inferential problem at hand. 
If a network is properly constructed, then a directed arc from a node B to a node A signifies that 
variable B (the ancestor, or parent node) has a direct influence on variable A (the descendant, or 
child node).

The key task operated by Bayesian networks consists of the processing of newly acquired in-
formation; that is, calculating the conditional probabilities of the states of the nodes in the net-
work one is interested in (e.g. a hypothesis node) given that the states of some other nodes (e.g. 
evidence node) have been observed. An extensive presentation of Bayesian networks in forensic 
science applications can be found in Taroni et al. (2014).

3.2 A model for equivocal evidence
Consider, as starting point, the structural example involving three variable nodes in a medical di-
agnosis case or in a DNA evidence case, where one is interested in using probability assignments 
concerning the methodological accuracy (quantified through the sensitivity and the specificity of 
the analytical method) and the expert’s objectivity (quantified through correct and false attribu-
tions such as being able to detect a positive results when a positive result should be detected, and 
avoid to declare a false positive or a false correspondence). A detailed example of DNA evidence 
evaluation is illustrated in Thompson, Taroni, and Aitken (2003).

This scenario can be illustrated through cascaded inferential steps. Consider the serial connec-
tion H! E! R in Fig. 1, where node H with states fh; �hg (e.g. ‘the patient is affected by a 
given disease’, h and ‘the patient is not affected by a given disease’, �h), node E with states fe;�eg
(e.g. ‘there is a positive result’, e and ‘there is a negative result’, �e), and node R with states fr;�rg

Figure 1. A serial connection for the scenario involving unequivocal evidence with nodes H (the hypothesis of 
interest), E (the theoretical evidence) and R (the reported evidence).

5 ‘Hereafter, only directed graphs that do not contain cycles and that are connected are considered. A cycle is said 
to exist if a node is an ancestor, and hence descendant, of itself, and a graph is connected if there exist at least one path 
between every two nodes. A connected directed graph with no cycles is called a directed acyclic graph (DAG)’ (see 
Taroni et al. (2014) at p. 47).

6 The term ‘unconditional’ refers here only to the absence of an explicit conditioning on other variables (nodes) in a 
network. Strictly speaking, a probability of the kind PrðAÞ should be considered as conditional because there is always 
contextual knowledge, generally denoted by the letter I, which is used to associate a value to PrðAÞ. This implies that 
PrðAÞ should be written more correctly as PrðAjIÞ, though I is omitted to reduce notational burden.

6                                                                                                                                                                   F. Taroni et al. 
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(e.g. ‘a positive result is reported’, r and ‘a negative result is reported’, �r) represent the main 
propositions of interest, the theoretical evidence (that is unknown to the user) and the reported 
evidence, respectively.

This is a well-known scenario, and the BF can be calculated rather straightforwardly accord-
ing to the developments proposed by Schum (1994).

A slightly different situation is the following where for some reasons the scientist is doubtful 
about the evidence (e.g. she/he is uncertain about the result of the test). Imagine for example that 
she/he is, e.g. 70% sure that the test is positive: there is just a 0.7 probability associated with the 
positivity of the reported result of the test. The task is to integrate this probabilistic judgment for 
an equivocal evidence into the model.7

In order to calculate the probability Pr1ðHÞ of the proposition of interest (e.g. the patient is af-
fected by a given disease) given equivocal evidence (e.g. the scientist is uncertain about the result 
of the test), one should take into account the ratios Pr1ðRÞ=Pr0ðRÞ and Pr1ð�RÞ=Pr0ð�RÞ that 
allows one to update the measure of the state of uncertainty about the hypothesis of interest H, 
in accordance to the Symmetry Principle and Equation (7).

To take into account this additional source of uncertainty, there is the need to extend the serial 
connection H! E! R in Fig. 1 by adding an extra variable node, say Rt, that leads to the serial 
connection in Fig. 2: H! E! R! Rt. This is a Boolean node with states true and false defined 
by the factors Pr1ðRÞ=Pr0ðRÞ and Pr1ð�RÞ=Pr0ð�RÞ when the corresponding state of R is positive 
(R ¼ r), and by the factors Pr1ð�RÞ=Pr0ð�RÞ and Pr1ðRÞ=Pr0ðRÞ when the corresponding state of R 
is negative (R ¼ �r) describing one’s uncertainty on the reported evidence. Note that values asso-
ciated with the states of this node can be set equal to 1 and 0, respectively, when there’s no un-
certainty about the reported evidence (see Section 2).

The probabilistic graphical model in Fig. 2 must be further developed in order to allow for the 
calculation of the BF. The proposed Bayesian network is depicted in Fig. 3. Three function8 

nodes (represented by a double-border hexagon) have been included to allow the user to com-
pute the Bayes factor as reported in Equation (8): ðiÞ Prior odds, quantifying the ratio between 
the prior probabilities Pr0ðHÞ=Pr0ð �HÞ; ðiiÞ Posterior odds, quantifying the ratio between the pos-
terior probabilities Pr1ðHÞ=Pr1ð �HÞ; and ðiiiÞ BF, quantifying the ratio between the posterior 
odds and the prior odds. Prior (time t0) and posterior (time t1) probabilities of proposition H 
( �H) are modelled by nodes H0nðdÞ and H1nðdÞ, where subscripts n(d) stand for numerator and de-
nominator, respectively. The dynamic9 node TH (depicted by means of a dashed-border node) is 
included to allow the user to fix the prior probabilities related to the proposition of interest H at 
time t0.

Some examples will be illustrated in Section 4.

4 Examples
4.1 Case scenario 1: the medical diagnosis example
Consider first the scenario, already introduced in subsection 3.2, where it is of interest to quan-
tify the probability that a patient is affected by a certain disease, and the available knowledge 
includes the result of a clinical test. Suppose that the prevalence of the disease in the relevant 
population is known to be 0.1. Using the previous notation, Pr0ðH ¼ hjIÞ ¼ 0:1. Probabilities 

Figure 2. A serial connection for the scenario involving equivocal evidence with nodes H (the hypothesis of 
interest), E (the theoretical evidence), R (the reported evidence) and Rt (the truthfulness of the reported evidence; it 
represents the factor that allows one to update the measure of the state of uncertainty about proposition H, in 
accordance to the Symmetry principle).

7 Some solutions alternative to Jeffrey’s conditionalization approach have been proposed, involving either algebraic 
and graphical modeling (see, e.g. Duda, Hart, and Nilsson (1976), Pearl (1988) and Korb and Nicholson (2004)).

8 A function node handles numerical functions within a Bayesian Network.
9 A dynamic node is time-based (temporal) related; it handles a time dynamic with arcs connecting adjacent time 

sequences and capture the fact that time flows forward.

Equivocal evidence                                                                                                                                                         7 

D
ow

nloaded from
 https://academ

ic.oup.com
/lpr/article/23/1/m

gae003/7657791 by U
niversité de Lausanne user on 25 April 2024



Pr0ðE ¼ ejH ¼ h; IÞ and Pr0ðE ¼ �ejH ¼ �h; IÞ stand for the sensitivity and the specificity of the 
test, respectively. Suppose that the sensitivity of the test is set equal to 0.95, while the specificity 
is 0.99. Suppose also that the laboratory always yields a positive result when the target feature 
exists, and that never yields a positive result when the target feature does not exist, so that 
Pr0ðR ¼ rjE ¼ eÞ ¼ 1 and Pr0ðR ¼ rjE ¼ �eÞ ¼ 0.

If the evidence is taken as unequivocal, the calculation of the posterior probability of the prop-
osition of interest H is a trivial problem, as it only requires a simple application of Bayes’ theo-
rem. However, imagine the analyst from the laboratory is uncertain about the result of the test, 
and she/he’s only 70% certain that the test is positive, i.e. Pr1ðR ¼ rÞ ¼ 0:7. To initialize the BN, 
it is necessary to assess the values to be associated with the states of the node Rt. As a first step, 
one needs to calculate the marginal probability Pr0ðRÞ in (6). Note that, being Pr0ðRjEÞ ¼ 1 and 
Pr0ðRj�EÞ ¼ 0, Pr0ðRÞ simplifies to Pr0ðEÞ, that can be easily obtained by extension of conversa-
tion as: 

Pr0ðEÞ ¼ Pr0ðEjHÞPr0ðHÞþ Pr0ðEj �HÞPr0ð �HÞ

¼ 0:95×0:1þ0:01×0:9 ¼ 0:104:

To each state of the node Rt there are therefore associated the following values if the correspond-
ing state of node R is positive:

� Pr1ðRÞ=Pr0ðRÞ ¼ 0:7=0:104 ¼ 6:731, and 
� Pr1ð�RÞ=Pr0ð�RÞ ¼ 0:3=0:896 ¼ 0:335. 

Conversely, if the corresponding state of node R is negative, the same values are associated, but 
in reverse order. The uncertainty related to the reported evidence is expressed in a ratio format.10 

Figure 3. A Bayesian network for a scenario involving equivocal evidence with nodes H (the hypothesis of interest), 
E (the theoretical evidence), R (the reported evidence) and Rt (the truthfulness of the reported evidence). Function 
nodes (represented by a double-border hexagon) quantify prior odds, posterior odds and the Bayes factor (BF). Prior 
(time t0) and posterior (time t1) probabilities of proposition H (�H) are modelled by nodes H0nðdÞ and H1nðdÞ, where 
subscripts n(d) stand for numerator and denominator, respectively. The dynamic node TH (depicted by means of a 
dashed-border node) is included to allow the user to fix the prior probabilities related to the propositions of interest 
H and �H at time t0.

10 The ratio values are automatically normalized by the BN software.
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Probability tables associated to the nodes of the proposed graphical model are displayed 
in Table 1.

The posterior probability of hypothesis H given the reported (equivocal) evidence R (the node 
Rt is instantiated and set equal to true) equals 0.641 (see Fig. 4). The same result can be 
obtained, through Jeffrey’s conditionalization, by using Equation (7). Posterior probabilities 
reported in Table 1 of Taroni, Garbolino, and Bozza (2020) can be easily reproduced through 
the four-node serial connection proposed in this article. It must however be observed that in 
those examples, while the probability Pr0ðR ¼ rjE ¼ eÞ to detect a feature when that feature 
does exist was taken equal to 1, as in the current example, the probability of a false association, 
that is the probability to detect a feature when that feature does not exist, was set equal to 0.04, 
i.e. Pr0ðR ¼ rjE ¼ eÞ ¼ 0:04.

4.2 Case scenario 2: the forensic evaluative example
Consider the following scenario as a general example of a forensic scientist’s problem of poten-
tial equivocal evidence. An investigator collects a stain on a crime scene, believing that it may 
contain blood coming from the criminal. The forensic scientist performs a presumptive test for 
haemoglobin. There are different types of presumptive tests for haemoglobin (e.g. Bluestar, 
Hexagon OBTI). Here, just for the sake of illustration, the immunochromatographic Hexagon 
OBTI test is considered because it is used in practice by some European forensic laboratory. The 

Table 1. Definition of nodes used in the Bayesian networks shown in Figs 2 and 3 and their associated probabilities

Node Definition States State of parent’s node Node probability table

Case 1 Case 2

H Proposition of interest h 0.1 0.1
�h 0.9 0.9

E Theoretical Evidence e H ¼ h 0.95 0.95
�e H ¼ h 0.05 0.05
e H ¼ �h 0.01 0.01
�e H ¼ �h 0.99 0.99

R Reported Evidence r E ¼ e 1 1
�r E ¼ e 0 0
r E ¼ �e 0 0.04
�r E ¼ �e 1 0.96

Rt Pr1ðRÞ=Pr0ðRÞ true R ¼ r 6.731 5.005
false R ¼ r 0.335 0.348
true R ¼ �r 0.335 0.348
false R ¼ �r 6.731 5.005

Figure 4. Extended representation of the Bayesian network for medical diagnosis in presence of equivocal evidence 
(Fig. 2): (left) initialized state with marginal probabilities, (right) state after instantiations of the node Rt (indicated in 
bold over a grey shaded area). Node definitions and probability tables are given in Table 1.
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test can produce a positive (E ¼ e) or a negative (E ¼ �e) results. The BN in Fig. 3 can therefore 
be implemented to calculate the BF in (8) for this scenario.

Consider the same values used in subsection 4.1 for nodes H, E, and RjE, while the probability 
of a false association is set equal to 0.04, i.e. PrðR ¼ rjE ¼ �eÞ ¼ 0:04. Again, there is uncertainty 
about the result of the test, and the analyst is only 70% certain that the result is positive. 
Probability Pr0ðRÞ in (6) can be obtained as 

Pr0ðRÞ ¼ 0:104þ0:04×0:896 ¼ 0:139;

and

� Pr1ðRÞ=Pr0ðRÞ ¼ 0:7=0:139 ¼ 5:005; 
� Pr1ð�RÞ=Pr0ð�RÞ ¼ 0:3=0:860 ¼ 0:348. 

Suppose that a positive result is reported (R ¼ r) (though there’s uncertainty about this result). 
Once the node Rt is instantiated (i.e. node Rt is set equal to true), the BN provides the value of 
the Bayes factor, that is equal to 8.25 (see Fig. 5). One can also easily verify that the posterior 
probability of H has lowered to 0.4782. This result shows the great inferential importance 
played by false positive values. In fact, rare events (such as the probability of false association) 
can have more force than non-rare events if one is able to ‘capture the nature of the interaction 
between event rareness and the credibility of our sources of evidence’ (Schum (2009) p. 225).

It must be underlined that to implement the BN that is depicted in Fig. 3 and illustrated in its 
initial and instantiated state in Fig. 5, the user is asked to make some off-diagrams computations 
to obtain the marginal probabilities Pr0ðRÞ in (6) and therefore the values associated to the states 
of node Rt (i.e. Pr1ðRÞ=Pr0ðRÞ and Pr1ð�RÞ=Pr0ð�RÞ). To avoid such off-diagrams computations, 
an alternative BN can be implemented, such as the one depicted in Fig. 6, where there are added 
ðiÞ an additional node U to allow the user to assign a value to Pr1ðRÞ and ðiiÞ a sub-BN (denomi-
nated M) to calculate automatically the marginal probability Pr0ðRÞ (for R ¼ r and R ¼ �r) in (6) 
informing node Rt. The extended representation of the sub-BN M is illustrated in Fig. 7. It con-
tains a function node Pr0ðRÞ that collects the marginal probabilities of node R from the serial 
connection H! E! R that is depicted in Fig. 1. The definition of the additional node U, its 
states and the update of the state of parent’s nodes of node Rt are presented in Table 2. The ex-
tended representation of the BN depicted in Fig. 6 is illustrated in Fig. 8.

4.3 Equivocal evidence in a different forensic domain
The topic of the evaluation of equivocal evidence has gained very poor attention in forensic sci-
ence applications. Caseworks where analysts need to deal with uncertain evidence are not infre-
quent. The problem of age estimation of living person where the chronological age is estimated 
from the observed degree of maturity of some selected physical attributes represents one exam-
ple. Dental examination, which is typically focused on the observation of the third molar miner-
alization stage, is performed by medicolegal specialists who also collect information on the 
skeletal development through a radiographic examination of the left hand as well as by an assess-
ment of the ossification status of the medial epiphysis of the clavicle by means of a computerised 
tomography (CT) scan. The task for an examiner consists of assessing the degree of maturity ob-
served during the examination of each physical attribute. This assessment is usually performed 
by classifying the degree of maturity observed in categorical developmental stages or by means 
of a referenced atlas, although this latter may be seen as a categorical classification in which each 
reference corresponds to a developmental stage. The choice of a categorical assessment follows 
from the difficulty or even the practical impossibility of evaluating the degree of maturity on a 
continuous scale. Different classification criteria may exist for a given physical attribute and, 
usually, the key elements for assigning a given developmental stage are defined by means of a vi-
sual or descriptive manner. For the sake of simplicity, consider a case example where it is exam-
ined only the development of the medial clavicle. Suppose that the examiner observes in the CT 
scan image a union of the medial clavicular epiphysis which is partially compatible with the 
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ossification status defined in the 3rd stage of a traditional four-stage classification. The examiner 
will then classify their observation in this specific stage. The final step in the age estimation pro-
cess consists of using the assessed degree of maturity to infer the chronological age of an individ-
ual or to compare competing hypotheses concerning the chronological age of the examined 
individual (e.g. a recurrent question of interest is whether an individual is adult or minor). The 
rationale behind the application of the Bayesian approach for age estimation is very intuitive: ini-
tial beliefs about some given propositions (which may concern, for example, the chronological 
age of a subject) are updated into posterior beliefs given the observation of given evidential ele-
ments (e.g. the developmental stages of the physical attribute belonging to that subject). This 
procedure is formally described by Bayes’ theorem, as in Equation (1); several papers described 
such a methodology (see, e.g., Sironi, Bozza, and Taroni (2020)). However, the examinations of 
scan images do not necessarily deliver a clear attribution of the developmental stage, and a prob-
abilistic assignment may be preferable to a categorical one. In such a context, Jeffrey’s condition-
alization allows one to take into account equivocal stage attribution.

Figure 5. Extended representation of the Bayesian network for the forensic scenario (Fig. 3): (top) initialized state 
with marginal probabilities, (bottom) state after instantiations of the node Rt indicated in bold over grey shaded area. 
Node definitions are given in Table 1.
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5. Conclusion
The use of the BF as a metric to assess the probative value of forensic traces is largely supported 
by operational standards and recommendations in different forensic disciplines. BF also satisfies 
a list of logical desiderata. However, the calculation of a BF falls shortly into operational 
impasses and probabilistic graphical models may represent a valuable tool capable of assisting 
practitioners in the different steps of their probabilistic reasoning.

A practical example is the calculation of the BF for equivocal testimony, as discussed by 
Taroni, Garbolino, and Bozza (2020). Starting from the observation that there may be uncer-
tainty about reporting, the authors have adopted an extended operational perspective and pro-
posed a cascaded inference taking into account this further source of uncertainty for Bayesian 

Figure 6. A Bayesian network for a scenario involving equivocal evidence including ðiÞ an additional node U 
(expressing degrees of belief Pr1ðRÞ upon the reported evidence R,) and ðiiÞ a sub-BN M to incorporate the 
calculation of the marginal probabilities Pr0ðRÞ in (6) informing node Rt. Node definitions are given in Tables 1 and 2.

Figure 7. Extended representation of the sub-network M appearing in collapsed form in Fig. 6. The serial connection 
H! E ! R has been presented in Fig. 1. Node Rtrue is a logical (true/false) node that allows to extract the marginal 
probability Pr0ðRÞ informing node Rt.

Table 2. Definition of nodes used in the Bayesian network shown in Fig. 6 and their associated probabilities. Nodes 
H, E and R have been defined in Table 1

Node Definition States State of parent’s nodes

U Degrees of belief about R (Pr1ðRÞ) u ¼ 0;0:1; . . . ;0:9; 1
Rt Pr1ðRÞ=Pr0ðRÞ true R ¼ r; U ¼ u; Pr0ðRÞ

false R ¼ r; U ¼ u; Pr0ðRÞ
true R ¼ �r; U ¼ u; Pr0ðRÞ
false R ¼ �r; U ¼ u; Pr0ðRÞ
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learning. These ideas have been further developed in this article, where a Bayesian network for 
evidence evaluation in the presence of equivocal testimony is delivered.
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