Indexation et annotation pour améliorer le partage des documents

Détails

Ressource 1Demande d'une copieEtat: Supprimée
Version: Après imprimatur
ID Serval
serval:BIB_F9F8A5E74C3E
Type
Thèse: thèse de doctorat.
Collection
Publications
Titre
Indexation et annotation pour améliorer le partage des documents
Auteur(s)
Miniaoui S.
Directeur(s)
Wentland M.
Institution
Université de Lausanne, Faculté des hautes études commerciales
Adresse
HEC Lausanne Quartier UNIL-Dorigny Bâtiment Internef CH - 1015 Lausanne
Statut éditorial
Acceptée
Date de publication
02/2009
Langue
français
Nombre de pages
190
Résumé
Le partage et la réutilisation d'objets d'apprentissage est encore une utopie. La mise en commun de documents pédagogiques et leur adaptation à différents contextes ont fait l'objet de très nombreux travaux. L'un des aspects qui fait problème concerne leur description qui se doit d'être aussi précise que possible afin d'en faciliter la gestion et plus spécifiquement un accès ciblé. Cette description s'effectue généralement par l'instanciation d'un ensemble de descripteurs standardisés ou métadonnées (LOM, ARIADNE, DC, etc). Force est de constater que malgré l'existence de ces standards, dont certains sont relativement peu contraignants, peu de pédagogues ou d'auteurs se prêtent à cet exercice qui reste lourd et peu gratifiant. Nous sommes parti de l'idée que si l'indexation pouvait être réalisée automatiquement avec un bon degré d'exactitude, une partie de la solution serait trouvée. Pour ce, nous nous sommes tout d'abord penché sur l'analyse des facteurs bloquants de la génération manuelle effectuée par les ingénieurs pédagogiques de l'Université de Lausanne. La complexité de ces facteurs (humains et techniques) nous a conforté dans l'idée que la génération automatique de métadonnées était bien de nature à contourner les difficultés identifiées. Nous avons donc développé une application de génération automatique de métadonnées laquelle se focalise sur le contenu comme source unique d'extraction. Une analyse en profondeur des résultats obtenus, nous a permis de constater que : - Pour les documents non structurés : notre application présente des résultats satisfaisants en se basant sur les indicateurs de mesure de qualité des métadonnées (complétude, précision, consistance logique et cohérence). - Pour des documents structurés : la génération automatique s'est révélée peu satisfaisante dans la mesure où elle ne permet pas d'exploiter les éléments sémantiques (structure, annotations) qu'ils contiennent. Et dans ce cadre nous avons pensé qu'il était possible de faire mieux. C'est ainsi que nous avons poursuivi nos travaux afin de proposer une deuxième application tirant profit du potentiel des documents structurés et des langages de transformation (XSLT) qui s'y rapportent pour améliorer la recherche dans ces documents. Cette dernière exploite la totalité des éléments sémantiques (structure, annotations) et constitue une autre alternative à la recherche basée sur les métadonnées. De plus, la recherche basée sur les annotations et la structure offre comme avantage supplémentaire de permettre de retrouver, non seulement les documents eux-mêmes, mais aussi des parties de documents. Cette caractéristique apporte une amélioration considérable par rapport à la recherche par métadonnées qui ne donne accès qu'à des documents entiers. En conclusion nous montrerons, à travers des exemples appropriés, que selon le type de document : il est possible de procéder automatiquement à leur indexation pour faciliter la recherche de documents dès lors qu'il s'agit de documents non structurés ou d'exploiter directement leur contenu sémantique dès lors qu'il s'agit de documents structurés.
Mots-clé
partage et réutilisation, objets d'apprentissage, répertoires d'objets d'apprentissage, métadonnées, LOM, ARIADNE, génération de métadonnées, indexation automatique, recherche d'information, documents structurés, annotations, sémantique, XML, XSLT
Création de la notice
19/02/2009 18:16
Dernière modification de la notice
03/03/2018 22:55
Données d'usage