Regulation of mass and function of pancreatic β-cells: identification of anti-apoptotic peptides and role of GLP-1
Details
Serval ID
serval:BIB_F09C5C928590
Type
PhD thesis: a PhD thesis.
Collection
Publications
Institution
Title
Regulation of mass and function of pancreatic β-cells: identification of anti-apoptotic peptides and role of GLP-1
Director(s)
Thorens B.
Institution details
Université de Lausanne, Faculté de biologie et médecine
Address
Lausanne
Publication state
Accepted
Issued date
2006
Language
english
Number of pages
185
Notes
REROID:R004205531 ill.
Abstract
Résumé
La masse de cellules β sécrétrices d'insuline est un tissu dynamique qui s'adapte aux variations de la demande métabolique pour assurer une normoglycémie. Cette adaptation se fait par un changement de sécrétion d'insuline et de la masse totale des cellules β. Une perte complète ou partielle des cellules β conduit respectivement à un diabète de type 1 et de type 2. Les mécanismes qui régulent la masse de cellules β et maintiennent leur phénotype differencié sont encore peu connus. Leur identification est nécessaire pour comprendre le développement du diabète et développer des stratégies de traitement. La greffe d'îlots est une approche thérapeutique prometteuse pour le diabète de type 1, mais est limitée par une perte précoce des cellules β due à une apoptose induite par des cytokines. Afin d'améliorer la survie des cellules β lors de la greffe d'îlots, le premier but était de trouver des peptides pouvant bloquer l'apoptose induite par FasL et TNF-α. Pour ce faire, deux librairies de phages ont été criblées pour sélectionner des peptides se liant au Fas DD ou au TNFRl DD. Nous avons identifié six peptides différents. Cependant, aucun d'entre eux n'était capable de protéger les cellules de l'apoptose induite par FasL ou TNF-α. Deuxièmement, le GLP-1 est une hormone qui stimule la sécrétion d'insuline, et est impliquée dans la prolifération des cellules β, la différentiation, et inhibe l'apoptose. Nous avons fait l'hypothèse que le GLP-1 joue un rôle crucial dans le contrôle de la masse et de la fonction des cellules β. Afin de l'évaluer, une analyse par puce à ADN a été réalisée en comparant des cellules βTC-Tet traitées avec du GLP-1 à des cellules non-traitées. 376 gènes régulés ont été identifiés, dont RGS2, CREM, ICERI et DUSP14, augmentés significativement par le GLP-1. Nous avons confirmé que le GLP-1 augmente l'expression de ces gènes, aussi bien au niveau des transcripts que des protéines. De plus, nous avons montré que le GLP-1 induit leur expression par activation de la voie cAMP/PKA, et nécessite l'entrée de calcium extracellulaire. D'après leur fonction biologique, nous avons ensuite supposé que ces gènes pourraient agir comme régulateurs négatifs de la signalisation du GLP-l, et donc freiner son effet proliférateur. Pour vérifier notre hypothèse, des siRNAs contre ces gènes ont été développés, et leurs effets sur la prolifération des cellules β seront évalués ultérieurement.
Abstract
The pancreatic β-cell mass is a dynamic tissue which adapts to variations in metabolic demand in order to ensure normoglycemia. This adaptation occurs through a change in both insulin secretion and the total mass of ,β-cells. An absolute or relative loss of β-cells leads to type 1 and type 2 diabetes, respectively. The mechanisms that regulate the pancreatic β-cell mass and maintain the fully differentiated phenotype of the insulin-secreting β-cells are only poorly defined. Their identification is required to understand the progression of diabetes, but also to design strategies for the treatment of diabetes. Islet transplantation is a promising therapeutic approach for type 1 diabetes, but it is still limited by an early graft loss due to cytokine-induced apoptosis.
In order to improve β-cell survival during islet transplantation, our first goal was to find novel blockers of FasL- and TNF-α-mediated cell death in the form of peptides. To that end, we screened two phage display libraries to select Fas DD- or TNFR1 DD-binding peptides. We identified six different small peptides. However, none of these peptides was able to prevent cells from FasL- or TNF-α-mediated apoptosis.
Secondly, GLP-1 is a hormone that has been shown to stimulate insulin secretion and to be involved in β-cell proliferation, differentiation and inhibition of apoptosis. We hypothesized that GLP-1 plays a crucial role to control mass and function of β-cells. To evaluate this hypothesis, we performed a cDNA microarray analysis with GLP-1-treated βTC-Tet cells compared to untreated cells. We found 376 regulated genes, among these, RGS2, CREM, ICERI and DUSP14, which were significantly upregulated by GLP-1. We confirmed that both their mRNA and protein levels were strongly and rapidly increased after GLP-1 treatment. Moreover, we found that GLP-1 activates their expression mainly through the activation of the cAMP/PKA signaling pathway, and requires extracellular calcium entry. According to their biological function, we then hypothesized that these genes might act as negative regulators of the GLP-1 signaling. In particular, they might brake the effects of GLP-1 on β-cell proliferation. To verify this hypothesis, siRNAs against these genes were developed. The effect of these siRNAs on GLP-1-induced β-cell proliferation will be evaluated later.
La masse de cellules β sécrétrices d'insuline est un tissu dynamique qui s'adapte aux variations de la demande métabolique pour assurer une normoglycémie. Cette adaptation se fait par un changement de sécrétion d'insuline et de la masse totale des cellules β. Une perte complète ou partielle des cellules β conduit respectivement à un diabète de type 1 et de type 2. Les mécanismes qui régulent la masse de cellules β et maintiennent leur phénotype differencié sont encore peu connus. Leur identification est nécessaire pour comprendre le développement du diabète et développer des stratégies de traitement. La greffe d'îlots est une approche thérapeutique prometteuse pour le diabète de type 1, mais est limitée par une perte précoce des cellules β due à une apoptose induite par des cytokines. Afin d'améliorer la survie des cellules β lors de la greffe d'îlots, le premier but était de trouver des peptides pouvant bloquer l'apoptose induite par FasL et TNF-α. Pour ce faire, deux librairies de phages ont été criblées pour sélectionner des peptides se liant au Fas DD ou au TNFRl DD. Nous avons identifié six peptides différents. Cependant, aucun d'entre eux n'était capable de protéger les cellules de l'apoptose induite par FasL ou TNF-α. Deuxièmement, le GLP-1 est une hormone qui stimule la sécrétion d'insuline, et est impliquée dans la prolifération des cellules β, la différentiation, et inhibe l'apoptose. Nous avons fait l'hypothèse que le GLP-1 joue un rôle crucial dans le contrôle de la masse et de la fonction des cellules β. Afin de l'évaluer, une analyse par puce à ADN a été réalisée en comparant des cellules βTC-Tet traitées avec du GLP-1 à des cellules non-traitées. 376 gènes régulés ont été identifiés, dont RGS2, CREM, ICERI et DUSP14, augmentés significativement par le GLP-1. Nous avons confirmé que le GLP-1 augmente l'expression de ces gènes, aussi bien au niveau des transcripts que des protéines. De plus, nous avons montré que le GLP-1 induit leur expression par activation de la voie cAMP/PKA, et nécessite l'entrée de calcium extracellulaire. D'après leur fonction biologique, nous avons ensuite supposé que ces gènes pourraient agir comme régulateurs négatifs de la signalisation du GLP-l, et donc freiner son effet proliférateur. Pour vérifier notre hypothèse, des siRNAs contre ces gènes ont été développés, et leurs effets sur la prolifération des cellules β seront évalués ultérieurement.
Abstract
The pancreatic β-cell mass is a dynamic tissue which adapts to variations in metabolic demand in order to ensure normoglycemia. This adaptation occurs through a change in both insulin secretion and the total mass of ,β-cells. An absolute or relative loss of β-cells leads to type 1 and type 2 diabetes, respectively. The mechanisms that regulate the pancreatic β-cell mass and maintain the fully differentiated phenotype of the insulin-secreting β-cells are only poorly defined. Their identification is required to understand the progression of diabetes, but also to design strategies for the treatment of diabetes. Islet transplantation is a promising therapeutic approach for type 1 diabetes, but it is still limited by an early graft loss due to cytokine-induced apoptosis.
In order to improve β-cell survival during islet transplantation, our first goal was to find novel blockers of FasL- and TNF-α-mediated cell death in the form of peptides. To that end, we screened two phage display libraries to select Fas DD- or TNFR1 DD-binding peptides. We identified six different small peptides. However, none of these peptides was able to prevent cells from FasL- or TNF-α-mediated apoptosis.
Secondly, GLP-1 is a hormone that has been shown to stimulate insulin secretion and to be involved in β-cell proliferation, differentiation and inhibition of apoptosis. We hypothesized that GLP-1 plays a crucial role to control mass and function of β-cells. To evaluate this hypothesis, we performed a cDNA microarray analysis with GLP-1-treated βTC-Tet cells compared to untreated cells. We found 376 regulated genes, among these, RGS2, CREM, ICERI and DUSP14, which were significantly upregulated by GLP-1. We confirmed that both their mRNA and protein levels were strongly and rapidly increased after GLP-1 treatment. Moreover, we found that GLP-1 activates their expression mainly through the activation of the cAMP/PKA signaling pathway, and requires extracellular calcium entry. According to their biological function, we then hypothesized that these genes might act as negative regulators of the GLP-1 signaling. In particular, they might brake the effects of GLP-1 on β-cell proliferation. To verify this hypothesis, siRNAs against these genes were developed. The effect of these siRNAs on GLP-1-induced β-cell proliferation will be evaluated later.
Create date
08/10/2010 14:29
Last modification date
20/08/2019 16:18