Conservation of the Eurasian Lynx (Lynx lynx) in a fragmented landscape - habitat models, dispersal and potential distribution

Détails

Demande d'une copie
ID Serval
serval:BIB_E6CC3782A32C
Type
Thèse: thèse de doctorat.
Collection
Publications
Titre
Conservation of the Eurasian Lynx (Lynx lynx) in a fragmented landscape - habitat models, dispersal and potential distribution
Auteur(s)
Zimmermann F.
Directeur(s)
Hausser J.
Détails de l'institution
Université de Lausanne, Faculté de biologie et médecine
Adresse
Lausanne
Statut éditorial
Acceptée
Date de publication
2004
Langue
anglais
Nombre de pages
179
Notes
REROID:R003759193; 30 cm ill.
Résumé
Abstract:
The expansion of a recovering population - whether re-introduced or spontaneously returning - is shaped by (i) biological (intrinsic) factors such as the land tenure system or dispersal, (ii) the distribution and availability of resources (e.g. prey), (iii) habitat and landscape features, and (iv) human attitudes and activities. In order to develop efficient conservation and recovery strategies, we need to understand all these factors and to predict the potential distribution and explore ways to reach it.
An increased number of lynx in the north-western Swiss Alps in the nineties lead to a new controversy about the return of this cat. When the large carnivores were given legal protection in many European countries, most organizations and individuals promoting their protection did not foresee the consequences. Management plans describing how to handle conflicts with large predators are needed to find a balance between "overabundance" and extinction. Wildlife and conservation biologists need to evaluate the various threats confronting populations so that adequate management decisions can be taken.
I developed a GIS probability model for the lynx, based on habitat information and radio-telemetry data from the Swiss Jura Mountains, in order to predict the potential distribution of the lynx in this mountain range, which is presently only partly occupied by lynx. Three of the 18 variables tested for each square kilometre describing land use, vegetation, and topography, qualified to predict the probability of lynx presence. The resulting map was evaluated with data from dispersing subadult lynx. Young lynx that were not able to establish home ranges in what was identified as good lynx habitat did not survive their first year of independence, whereas the only one that died in good lynx habitat was illegally killed.
Radio-telemetry fixes are often used as input data to calibrate habitat models. Radio-telemetry is the only way to gather accurate and unbiased data on habitat use of elusive larger terrestrial mammals. However, it is time consuming and expensive, and can therefore only be applied in limited areas. Habitat models extrapolated over large areas can in turn be problematic, as habitat characteristics and availability may change from one area to the other. I analysed the predictive power of Ecological Niche Factor Analysis (ENFA) in Switzerland with the lynx as focal species. According to my results, the optimal sampling strategy to predict species distribution in an Alpine area lacking available data would be to pool presence cells from contrasted regions (Jura Mountains, Alps), whereas in regions with a low ecological variance (Jura Mountains), only local presence cells should be used for the calibration of the model.
Dispersal influences the dynamics and persistence of populations, the distribution and abundance of species, and gives the communities and ecosystems their characteristic texture in space and time. Between 1988 and 2001, the spatio-temporal behaviour of subadult Eurasian lynx in two re-introduced populations in Switzerland was studied, based on 39 juvenile lynx of which 24 were radio-tagged to understand the factors influencing dispersal. Subadults become independent from their mothers at the age of 8-11 months. No sex bias neither in the dispersal rate nor in the distance moved was detected. Lynx are conservative dispersers, compared to bear and wolf, and settled within or close to known lynx occurrences. Dispersal distances reached in the high lynx density population - shorter than those reported in other Eurasian lynx studies - are limited by habitat restriction hindering connections with neighbouring metapopulations.
I postulated that high lynx density would lead to an expansion of the population and validated my predictions with data from the north-western Swiss Alps where about 1995 a strong increase in lynx abundance took place. The general hypothesis that high population density will foster the expansion of the population was not confirmed. This has consequences for the re-introduction and recovery of carnivores in a fragmented landscape. To establish a strong source population in one place might not be an optimal strategy. Rather, population nuclei should be founded in several neighbouring patches. Exchange between established neighbouring subpopulations will later on take place, as adult lynx show a higher propensity to cross barriers than subadults.
To estimate the potential population size of the lynx in the Jura Mountains and to assess possible corridors between this population and adjacent areas, I adapted a habitat probability model for lynx distribution in the Jura Mountains with new environmental data and extrapolated it over the entire mountain range. The model predicts a breeding population ranging from 74-101 individuals and from 51-79 individuals when continuous habitat patches < 50 km2 are disregarded. The Jura Mountains could once be part of a metapopulation, as potential corridors exist to the adjoining areas (Alps, Vosges Mountains, and Black Forest). Monitoring of the population size, spatial expansion, and the genetic surveillance in the Jura Mountains must be continued, as the status of the population is still critical.
ENFA was used to predict the potential distribution of lynx in the Alps. The resulting model divided the Alps into 37 suitable habitat patches ranging from 50 to 18,711 km2, covering a total area of about 93,600 km2. When using the range of lynx densities found in field studies in Switzerland, the Alps could host a population of 961 to 1,827 residents. The results of the cost-distance analysis revealed that all patches were within the reach of dispersing lynx, as the connection costs were in the range of dispersal cost of radio-tagged subadult lynx moving through unfavorable habitat. Thus, the whole Alps could once be considered as a metapopulation. But experience suggests that only few disperser will cross unsuitable areas and barriers. This low migration rate may seldom allow the spontaneous foundation of new populations in unsettled areas. As an alternative to natural dispersal, artificial transfer of individuals across the barriers should be considered.
Wildlife biologists can play a crucial role in developing adaptive management experiments to help managers learning by trial. The case of the lynx in Switzerland is a good example of a fruitful cooperation between wildlife biologists, managers, decision makers and politician in an adaptive management process. This cooperation resulted in a Lynx Management Plan which was implemented in 2000 and updated in 2004 to give the cantons directives on how to handle lynx-related problems. This plan was put into practice e.g. in regard to translocation of lynx into unsettled areas.
Résumé:
L'expansion d'une population en phase de recolonisation, qu'elle soit issue de réintroductions ou d'un retour naturel dépend 1) de facteurs biologiques tels que le système social et le mode de dispersion, 2) de la distribution et la disponibilité des ressources (proies), 3) de l'habitat et des éléments du paysage, 4) de l'acceptation de l'espèce par la population locale et des activités humaines. Afin de pouvoir développer des stratégies efficaces de conservation et de favoriser la recolonisation, chacun de ces facteurs doit être pris en compte. En plus, la distribution potentielle de l'espèce doit pouvoir être déterminée et enfin, toutes les possibilités pour atteindre les objectifs, examinées.
La phase de haute densité que la population de lynx a connue dans les années nonante dans le nord-ouest des Alpes suisses a donné lieu à une controverse assez vive. La protection du lynx dans de nombreux pays européens, promue par différentes organisations, a entraîné des conséquences inattendues; ces dernières montrent que tout plan de gestion doit impérativement indiquer des pistes quant à la manière de gérer les conflits, tout en trouvant un équilibre entre l'extinction et la surabondance de l'espèce. Les biologistes de la conservation et de la faune sauvage doivent pour cela évaluer les différents risques encourus par les populations de lynx, afin de pouvoir rapidement prendre les meilleuresmdécisions de gestion.
Un modèle d'habitat pour le lynx, basé sur des caractéristiques de l'habitat et des données radio télémétriques collectées dans la chaîne du Jura, a été élaboré afin de prédire la distribution potentielle dans cette région, qui n'est que partiellement occupée par l'espèce. Trois des 18 variables testées, décrivant pour chaque kilomètre carré l'utilisation du sol, la végétation ainsi que la topographie, ont été retenues pour déterminer la probabilité de présence du lynx. La carte qui en résulte a été comparée aux données télémétriques de lynx subadultes en phase de dispersion. Les jeunes qui n'ont pas pu établir leur domaine vital dans l'habitat favorable prédit par le modèle n'ont pas survécu leur première année d'indépendance alors que le seul individu qui est mort dans l'habitat favorable a été braconné. Les données radio-télémétriques sont souvent utilisées pour l'étalonnage de modèles d'habitat. C'est un des seuls moyens à disposition qui permette de récolter des données non biaisées et précises sur l'occupation de l'habitat par des mammifères terrestres aux moeurs discrètes. Mais ces méthodes de- mandent un important investissement en moyens financiers et en temps et peuvent, de ce fait, n'être appliquées qu'à des zones limitées. Les modèles d'habitat sont ainsi souvent extrapolés à de grandes surfaces malgré le risque d'imprécision, qui résulte des variations des caractéristiques et de la disponibilité de l'habitat d'une zone à l'autre. Le pouvoir de prédiction de l'Analyse Ecologique de la Niche (AEN) dans les zones où les données de présence n'ont pas été prises en compte dans le calibrage du modèle a été analysée dans le cas du lynx en Suisse. D'après les résultats obtenus, la meilleure mé- thode pour prédire la distribution du lynx dans une zone alpine dépourvue d'indices de présence est de combiner des données provenant de régions contrastées (Alpes, Jura). Par contre, seules les données sur la présence locale de l'espèce doivent être utilisées pour les zones présentant une faible variance écologique tel que le Jura.
La dispersion influence la dynamique et la stabilité des populations, la distribution et l'abondance des espèces et détermine les caractéristiques spatiales et temporelles des communautés vivantes et des écosystèmes. Entre 1988 et 2001, le comportement spatio-temporel de lynx eurasiens subadultes de deux populations réintroduites en Suisse a été étudié, basé sur le suivi de 39 individus juvéniles dont 24 étaient munis d'un collier émetteur, afin de déterminer les facteurs qui influencent la dispersion. Les subadultes se sont séparés de leur mère à l'âge de 8 à 11 mois. Le sexe n'a pas eu d'influence sur le nombre d'individus ayant dispersés et la distance parcourue au cours de la dispersion. Comparé à l'ours et au loup, le lynx reste très modéré dans ses mouvements de dispersion. Tous les individus ayant dispersés se sont établis à proximité ou dans des zones déjà occupées par des lynx. Les distances parcourues lors de la dispersion ont été plus courtes pour la population en phase de haute densité que celles relevées par les autres études de dispersion du lynx eurasien. Les zones d'habitat peu favorables et les barrières qui interrompent la connectivité entre les populations sont les principales entraves aux déplacements, lors de la dispersion. Dans un premier temps, nous avons fait l'hypothèse que les phases de haute densité favorisaient l'expansion des populations. Mais cette hypothèse a été infirmée par les résultats issus du suivi des lynx réalisé dans le nord-ouest des Alpes, où la population connaissait une phase de haute densité depuis 1995. Ce constat est important pour la conservation d'une population de carnivores dans un habitat fragmenté. Ainsi, instaurer une forte population source à un seul endroit n'est pas forcément la stratégie la plus judicieuse. Il est préférable d'établir des noyaux de populations dans des régions voisines où l'habitat est favorable. Des échanges entre des populations avoisinantes pourront avoir lieu par la suite car les lynx adultes sont plus enclins à franchir les barrières qui entravent leurs déplacements que les individus subadultes.
Afin d'estimer la taille de la population de lynx dans le Jura et de déterminer les corridors potentiels entre cette région et les zones avoisinantes, un modèle d'habitat a été utilisé, basé sur un nouveau jeu de variables environnementales et extrapolé à l'ensemble du Jura. Le modèle prédit une population reproductrice de 74 à 101 individus et de 51 à 79 individus lorsque les surfaces d'habitat d'un seul tenant de moins de 50 km2 sont soustraites. Comme des corridors potentiels existent effectivement entre le Jura et les régions avoisinantes (Alpes, Vosges, et Forêt Noire), le Jura pourrait faire partie à l'avenir d'une métapopulation, lorsque les zones avoisinantes seront colonisées par l'espèce. La surveillance de la taille de la population, de son expansion spatiale et de sa structure génétique doit être maintenue car le statut de cette population est encore critique.
L'AEN a également été utilisée pour prédire l'habitat favorable du lynx dans les Alpes. Le modèle qui en résulte divise les Alpes en 37 sous-unités d'habitat favorable dont la surface varie de 50 à 18'711 km2, pour une superficie totale de 93'600 km2. En utilisant le spectre des densités observées dans les études radio-télémétriques effectuées en Suisse, les Alpes pourraient accueillir une population de lynx résidents variant de 961 à 1'827 individus. Les résultats des analyses de connectivité montrent que les sous-unités d'habitat favorable se situent à des distances telles que le coût de la dispersion pour l'espèce est admissible. L'ensemble des Alpes pourrait donc un jour former une métapopulation. Mais l'expérience montre que très peu d'individus traverseront des habitats peu favorables et des barrières au cours de leur dispersion. Ce faible taux de migration rendra difficile toute nouvelle implantation de populations dans des zones inoccupées. Une solution alternative existe cependant : transférer artificiellement des individus d'une zone à l'autre.
Les biologistes spécialistes de la faune sauvage peuvent jouer un rôle important et complémentaire pour les gestionnaires de la faune, en les aidant à mener des expériences de gestion par essai. Le cas du lynx en Suisse est un bel exemple d'une collaboration fructueuse entre biologistes de la faune sauvage, gestionnaires, organes décisionnaires et politiciens. Cette coopération a permis l'élaboration du Concept Lynx Suisse qui est entré en vigueur en 2000 et remis à jour en 2004. Ce plan donne des directives aux cantons pour appréhender la problématique du lynx. Il y a déjà eu des applications concrètes sur le terrain, notamment par des translocations d'individus dans des zones encore inoccupées.
Création de la notice
16/12/2010 12:53
Dernière modification de la notice
20/08/2019 16:09
Données d'usage