Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries

Details

Serval ID
serval:BIB_E0046D78A90E
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries
Journal
Circulation
Author(s)
Batenburg  W. W., Garrelds  I. M., Bernasconi  C. C., Juillerat-Jeanneret  L., van Kats  J. P., Saxena  P. R., Danser  A. H.
ISSN
1524-4539 (Electronic)
Publication state
Published
Issued date
2004
Volume
109
Number
19
Pages
2296-2301
Notes
PT - Journal Article
Abstract
BACKGROUND: Angiotensin (Ang) II type 2 (AT2) receptor stimulation results in coronary vasodilation in the rat heart. In contrast, AT2 receptor-mediated vasodilation could not be observed in large human coronary arteries. We studied Ang II-induced vasodilation of human coronary microarteries (HCMAs). METHODS AND RESULTS: HCMAs (diameter, 160 to 500 microm) were obtained from 49 heart valve donors (age, 3 to 65 years). Ang II constricted HCMAs, mounted in Mulvany myographs, in a concentration-dependent manner (pEC50, 8.6+/-0.2; maximal effect [E(max)], 79+/-13% of the contraction to 100 mmol/L K+). The Ang II type 1 receptor antagonist irbesartan prevented this vasoconstriction, whereas the AT2 receptor antagonist PD123319 increased E(max) to 97+/-14% (P<0.05). The increase in E(max) was larger in older donors (correlation DeltaE(max) versus age, r=0.47, P<0.05). The PD123319-induced potentiation was not observed in the presence of the NO synthase inhibitor L-NAME, the bradykinin type 2 (B2) receptor antagonist Hoe140, or after removal of the endothelium. Ang II relaxed U46619-preconstricted HCMAs in the presence of irbesartan by maximally 49+/-16%, and PD123319 prevented this relaxation. Finally, radioligand binding studies and reverse transcription-polymerase chain reaction confirmed the expression of AT2 receptors in HCMAs. CONCLUSIONS: AT2 receptor-mediated vasodilation in the human heart appears to be limited to coronary microarteries and is mediated by B2 receptors and NO. Most likely, AT2 receptors are located on endothelial cells, and their contribution increases with age
Keywords
Adolescent/Adult/Aged/Angiotensin II/pharmacology/Biphenyl Compounds/Child/Child,Preschool/Coronary Circulation/drug effects/Coronary Vessels/physiology/Cyclic GMP/metabolism/Female/Humans/Imidazoles/Male/Microcirculation/Middle Aged/NG-Nitroarginine Methyl Ester/Nitric Oxide/Pyridines/RNA,Messenger/biosynthesis/Radioligand Assay/Receptor,Angiotensin,Type 1/genetics/Receptor,Angiotensin,Type 2/antagonists & inhibitors/Receptor,Bradykinin B2/Tetrazoles/Vasodilation
Pubmed
Web of science
Open Access
Yes
Create date
29/01/2008 19:36
Last modification date
20/08/2019 17:04
Usage data