Providing more informative projections of climate change impact on plant distribution in a mountain environment

Details

Request a copy
Serval ID
serval:BIB_DF88CE185D8F
Type
PhD thesis: a PhD thesis.
Collection
Publications
Institution
Title
Providing more informative projections of climate change impact on plant distribution in a mountain environment
Author(s)
Randin C.
Director(s)
Guisan A.
Codirector(s)
Goudet J.
Institution details
Université de Lausanne, Faculté de biologie et médecine
Address
Lausanne
Publication state
Accepted
Issued date
2007
Language
english
Number of pages
252
Notes
REROID:R004541681 ill.
Abstract
Summary
Due to their conic shape and the reduction of area with increasing elevation, mountain ecosystems were early identified as potentially very sensitive to global warming. Moreover, mountain systems may experience unprecedented rates of warming during the next century, two or three times higher than that records of the 20th century. In this context, species distribution models (SDM) have become important tools for rapid assessment of the impact of accelerated land use and climate change on the distribution plant species.
In my study, I developed and tested new predictor variables for species distribution models (SDM), specific to current and future geographic projections of plant species in a mountain system, using the Western Swiss Alps as model region. Since meso- and micro-topography are relevant to explain geographic patterns of plant species in mountain environments, I assessed the effect of scale on predictor variables and geographic projections of SDM. I also developed a methodological framework of space-for-time evaluation to test the robustness of SDM when projected in a future changing climate. Finally, I used a cellular automaton to run dynamic simulations of plant migration under climate change in a mountain landscape, including realistic distance of seed dispersal. Results of future projections for the 21st century were also discussed in perspective of vegetation changes monitored during the 20th century.
Overall, I showed in this study that, based on the most severe A1 climate change scenario and realistic dispersal simulations of plant dispersal, species extinctions in the Western Swiss Alps could affect nearly one third (28.5%) of the 284 species modeled by 2100. With the less severe 61 scenario, only 4.6% of species are predicted to become extinct. However, even with B1, 54% (153 species) may still loose more than 80% of their initial surface.
Results of monitoring of past vegetation changes suggested that plant species can react quickly to the warmer conditions as far as competition is low However, in subalpine grasslands, competition of already present species is probably important and limit establishment of newly arrived species.
Results from future simulations also showed that heavy extinctions of alpine plants may start already in 2040, but the latest in 2080.
My study also highlighted the importance of fine scale and regional. assessments of climate change impact on mountain vegetation, using more direct predictor variables. Indeed, predictions at the continental scale may fail to predict local refugees or local extinctions, as well as loss of connectivity between local populations. On the other hand, migrations of low-elevation species to higher altitude may be difficult to predict at the local scale.
Résumé
La forme conique des montagnes ainsi que la diminution de surface dans les hautes altitudes sont reconnues pour exposer plus sensiblement les écosystèmes de montagne au réchauffement global. En outre, les systèmes de montagne seront sans doute soumis durant le 21ème siècle à un réchauffement deux à trois fois plus rapide que celui mesuré durant le 20ème siècle. Dans ce contexte, les modèles prédictifs de distribution géographique de la végétation se sont imposés comme des outils puissants pour de rapides évaluations de l'impact des changements climatiques et de la transformation du paysage par l'homme sur la végétation.
Dans mon étude, j'ai développé de nouvelles variables prédictives pour les modèles de distribution, spécifiques à la projection géographique présente et future des plantes dans un système de montagne, en utilisant les Préalpes vaudoises comme zone d'échantillonnage. La méso- et la microtopographie étant particulièrement adaptées pour expliquer les patrons de distribution géographique des plantes dans un environnement montagneux, j'ai testé les effets d'échelle sur les variables prédictives et sur les projections des modèles de distribution. J'ai aussi développé un cadre méthodologique pour tester la robustesse potentielle des modèles lors de projections pour le futur. Finalement, j'ai utilisé un automate cellulaire pour simuler de manière dynamique la migration future des plantes dans le paysage et dans quatre scénarios de changement climatique pour le 21ème siècle. J'ai intégré dans ces simulations des mécanismes et des distances plus réalistes de dispersion de graines. J'ai pu montrer, avec les simulations les plus réalistes, que près du tiers des 284 espèces considérées (28.5%) pourraient être menacées d'extinction en 2100 dans le cas du plus sévère scénario de changement climatique A1. Pour le moins sévère des scénarios B1, seulement 4.6% des espèces sont menacées d'extinctions, mais 54% (153 espèces) risquent de perdre plus 80% de leur habitat initial.
Les résultats de monitoring des changements de végétation dans le passé montrent que les plantes peuvent réagir rapidement au réchauffement climatique si la compétition est faible. Dans les prairies subalpines, les espèces déjà présentes limitent certainement l'arrivée de nouvelles espèces par effet de compétition.
Les résultats de simulation pour le futur prédisent le début d'extinctions massives dans les Préalpes à partir de 2040, au plus tard en 2080.
Mon travail démontre aussi l'importance d'études régionales à échelle fine pour évaluer l'impact des changements climatiques sur la végétation, en intégrant des variables plus directes. En effet, les études à échelle continentale ne tiennent pas compte des micro-refuges, des extinctions locales ni des pertes de connectivité entre populations locales. Malgré cela, la migration des plantes de basses altitudes reste difficile à prédire à l'échelle locale sans modélisation plus globale.
Create date
24/06/2010 10:40
Last modification date
20/08/2019 16:03
Usage data