Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging.
Details
Serval ID
serval:BIB_D9A3EBA4DBE0
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging.
Journal
Circulation. Cardiovascular imaging
ISSN
1942-0080 (Electronic)
ISSN-L
1941-9651
Publication state
Published
Issued date
07/2014
Peer-reviewed
Oui
Volume
7
Number
4
Pages
663-670
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Abstract
Phase-contrast MRI with metric-optimized gating is a promising new technique for studying the distribution of the fetal circulation. However, mean and reference ranges for blood flow measurements made in the major fetal vessels using this technique are yet to be established.
We measured flow in the major vessels of the fetal circulation in 40 late-gestation normal human fetuses using phase-contrast MRI (mean gestational age, 37 [SD=1.1] weeks). Flows were indexed to the fetal weight, which was estimated from the fetal volume calculated by MRI segmentation. The following mean flows (in mL/min per kilogram; ±2SD) were obtained: combined ventricular output, 465 (351, 579); main pulmonary artery, 261 (169, 353); ascending aorta, 191 (121, 261); superior vena cava, 137 (77, 197); ductus arteriosus, 187 (109, 265); descending aorta, 252 (160, 344); pulmonary blood flow, 77 (0, 160); umbilical vein, 134 (62, 206); and foramen ovale, 135 (37, 233). Expressed as percentages of the combined ventricular output, the mean flows±2 SD were as follows: main pulmonary artery, 56 (44, 68); ascending aorta, 41 (29, 53); superior vena cava, 29 (15, 43); ductus arteriosus, 41 (25, 57); descending aorta, 55 (35, 75); pulmonary blood flow, 16 (0, 34); umbilical vein, 29 (11, 47); and foramen ovale, 29 (7, 51). A strong inverse relationship between foramen ovale shunt and pulmonary blood flow was noted (r=-0.64; P<0.0001).
Although too small a sample size to provide normal ranges, these results are in keeping with those predicted in humans based on measurements made in fetal lambs using radioactive microspheres and provide preliminary reference ranges for the late-gestation human fetuses. The wide range we found in foramen ovale shunting suggests a degree of variability in the way blood is streamed through the fetal circulation.
We measured flow in the major vessels of the fetal circulation in 40 late-gestation normal human fetuses using phase-contrast MRI (mean gestational age, 37 [SD=1.1] weeks). Flows were indexed to the fetal weight, which was estimated from the fetal volume calculated by MRI segmentation. The following mean flows (in mL/min per kilogram; ±2SD) were obtained: combined ventricular output, 465 (351, 579); main pulmonary artery, 261 (169, 353); ascending aorta, 191 (121, 261); superior vena cava, 137 (77, 197); ductus arteriosus, 187 (109, 265); descending aorta, 252 (160, 344); pulmonary blood flow, 77 (0, 160); umbilical vein, 134 (62, 206); and foramen ovale, 135 (37, 233). Expressed as percentages of the combined ventricular output, the mean flows±2 SD were as follows: main pulmonary artery, 56 (44, 68); ascending aorta, 41 (29, 53); superior vena cava, 29 (15, 43); ductus arteriosus, 41 (25, 57); descending aorta, 55 (35, 75); pulmonary blood flow, 16 (0, 34); umbilical vein, 29 (11, 47); and foramen ovale, 29 (7, 51). A strong inverse relationship between foramen ovale shunt and pulmonary blood flow was noted (r=-0.64; P<0.0001).
Although too small a sample size to provide normal ranges, these results are in keeping with those predicted in humans based on measurements made in fetal lambs using radioactive microspheres and provide preliminary reference ranges for the late-gestation human fetuses. The wide range we found in foramen ovale shunting suggests a degree of variability in the way blood is streamed through the fetal circulation.
Keywords
Adult, Arteries/embryology, Arteries/physiology, Cross-Sectional Studies, Female, Fetal Diseases/diagnosis, Fetal Diseases/physiopathology, Fetus/blood supply, Gestational Age, Humans, Magnetic Resonance Imaging, Cine/methods, Pregnancy, Prenatal Diagnosis/methods, Prospective Studies, Reference Values, Regional Blood Flow/physiology, Reproducibility of Results, Vascular Diseases/diagnosis, Vascular Diseases/embryology, Vascular Diseases/physiopathology, magnetic resonance imaging, pediatrics, regional blood flow
Pubmed
Web of science
Open Access
Yes
Create date
10/11/2021 9:00
Last modification date
13/04/2024 6:06