BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis.
Details
Download: BIB_D60699FA757E.P001.pdf (4265.11 [Ko])
State: Public
Version: author
State: Public
Version: author
Serval ID
serval:BIB_D60699FA757E
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis.
Journal
Journal of Cell Biology
ISSN
1540-8140 (Electronic)
ISSN-L
0021-9525
Publication state
Published
Issued date
2014
Peer-reviewed
Oui
Volume
205
Number
2
Pages
233-249
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't Publication Status: ppublish
Abstract
Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca(2+)-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca(2+) overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC β-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavβ subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain-binding pocket in Cavβ and interferes with the association between Cavβ and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavβ via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca(2+) channel activity at the plasma membrane, resulting in the inhibition of Ca(2+)-evoked exocytosis. Thus, BARP can modulate the localization of Cavβ and its association with the Cavα1 subunit to negatively regulate VGCC activity.
Keywords
Animals, Binding Sites, COS Cells, Calcium/metabolism, Calcium Channels, L-Type/genetics, Calcium Channels, L-Type/metabolism, Cercopithecus aethiops, Cricetinae, Humans, Membrane Glycoproteins/genetics, Membrane Glycoproteins/metabolism, Mice, Nerve Tissue Proteins/genetics, Nerve Tissue Proteins/metabolism, Neuroendocrine Cells/cytology, Neuroendocrine Cells/metabolism, Neurons/cytology, Neurons/metabolism, PC12 Cells, Protein Binding, Protein Structure, Tertiary, Rats
Pubmed
Web of science
Open Access
Yes
Create date
15/12/2014 14:44
Last modification date
20/08/2019 15:55