In vitro-transfusional model for red-blood-cell study: the advantage of lowering hematocrit.

Details

Serval ID
serval:BIB_D2AB61FF2462
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
In vitro-transfusional model for red-blood-cell study: the advantage of lowering hematocrit.
Journal
Blood transfusion = Trasfusione del sangue
Author(s)
Längst E., Crettaz D., Delobel J., Renella R., Bardyn M., Turcatti G., Tissot J.D., Prudent M.
ISSN
2385-2070 (Electronic)
ISSN-L
1723-2007
Publication state
Published
Issued date
07/2023
Peer-reviewed
Oui
Volume
21
Number
4
Pages
277-288
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
The quality of red blood cells (RBCs) stored in red cell concentrates (RCCs) is influenced by processing, storage and donor characteristics, and can have a clinical impact on transfused patients. To evaluate RBC properties and their potential impact in a transfusion setting, a simple in vitro-transfusional model has been developed.
Transfusion was simulated by mixing a washed RBC pool from two male-derived RCCs stored at 4°C with a pool of 15 male-derived fresh frozen plasma (FFP) units, representing the recipient, at a hematocrit (HCT) of 30% ("control" setting) or 5% (alternative model). The mixtures were incubated at 37°C, 5% of CO <sub>2</sub> up to 48 h. Different metabolites, hemolysis and microvesicles (MVs) were quantified at several incubation times and RBC-morphology changes and deformability after incubation. For each model, biological triplicates have been investigated with RCCs at storage days 2 and 43.
The 5%-HCT model restored the 2,3-DPG level and maintained the ATP level. Furthermore, glucose consumption and corresponding lactate production were increased in the 5%- vs the 30%-HCT condition. Lower hemolysis was observed with 5%-HCT, but only at day 2. However, morphological analysis by digital holographic microscopy (DHM) revealed a decreased fraction of discocytes at 5% rather than at 30% of HCT at storage day 2 but at day 43, the trend was inverted. Concordantly, RBCs incubated at 5% of HCT were more deformable than at 30% at day 43 (p<0.0001).
Higher metabolic activity of RBCs in the 5%-HCT condition was promoted by a higher glucose availability and limited cell-waste accumulation. The conditions of the new proposed model thus enabled rejuvenation of RBCs and maintained them in a physiological-close state in contrast to the 30%-HCT model. It may be used as a first approach to evaluate e.g., the impact of donor and recipient characteristics on RBC properties.
Keywords
Humans, Male, Hematocrit, Hemolysis, Erythrocytes, Blood Transfusion, Blood Preservation, Glucose/pharmacology
Pubmed
Create date
09/11/2022 8:13
Last modification date
18/07/2023 6:56
Usage data