Caveolin-1 opens endothelial cell junctions by targeting catenins.
Details
Download: REF.pdf (838.95 [Ko])
State: Public
Version: Final published version
License: Not specified
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
State: Public
Version: Final published version
License: Not specified
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
Serval ID
serval:BIB_CCF339084AD6
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Caveolin-1 opens endothelial cell junctions by targeting catenins.
Journal
Cardiovascular Research
ISSN
1755-3245 (Electronic)
ISSN-L
0008-6363
Publication state
Published
Issued date
2012
Peer-reviewed
Oui
Volume
93
Number
1
Pages
130-140
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't Publication Status: ppublish
Abstract
AIMS: A fundamental phenomenon in inflammation is the loss of endothelial barrier function, in which the opening of endothelial cell junctions plays a central role. However, the molecular mechanisms that ultimately open the cell junctions are largely unknown.¦METHODS AND RESULTS: Impedance spectroscopy, biochemistry, and morphology were used to investigate the role of caveolin-1 in the regulation of thrombin-induced opening of cell junctions in cultured human and mouse endothelial cells. Here, we demonstrate that the vascular endothelial (VE) cadherin/catenin complex targets caveolin-1 to endothelial cell junctions. Association of caveolin-1 with VE-cadherin/catenin complexes is essential for the barrier function decrease in response to the pro-inflammatory mediator thrombin, which causes a reorganization of the complex in a rope ladder-like pattern accompanied by a loss of junction-associated actin filaments. Mechanistically, we show that in response to thrombin stimulation the protease-activated receptor 1 (PAR-1) causes phosphorylation of caveolin-1, which increasingly associates with β- and γ-catenin. Consequently, the association of β- and γ-catenin with VE-cadherin is weakened, thus allowing junction reorganization and a decrease in barrier function. Thrombin-induced opening of cell junctions is lost in caveolin-1-knockout endothelial cells and after expression of a Y/F-caveolin-1 mutant but is completely reconstituted after expression of wild-type caveolin-1.¦CONCLUSION: Our results highlight the pivotal role of caveolin-1 in VE-cadherin-mediated cell adhesion via catenins and, in turn, in barrier function regulation.
Keywords
Animals, Antigens, CD/metabolism, Base Sequence, CHO Cells, Cadherins/metabolism, Catenins/metabolism, Caveolin 1/deficiency, Caveolin 1/genetics, Cell Line, Cricetinae, Cricetulus, DNA Primers/genetics, Endothelial Cells/drug effects, Endothelial Cells/metabolism, Human Umbilical Vein Endothelial Cells, Humans, Intercellular Junctions/drug effects, Intercellular Junctions/metabolism, Mice, Mice, Knockout, Multiprotein Complexes/metabolism, Mutant Proteins/genetics, Mutant Proteins/metabolism, Thrombin/pharmacology
Pubmed
Web of science
Open Access
Yes
Create date
04/06/2012 11:12
Last modification date
14/02/2022 7:57