Low expression of the beta-ENaC subunit impairs lung fluid clearance in the mouse.
Details
Serval ID
serval:BIB_CB80E793F94B
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Low expression of the beta-ENaC subunit impairs lung fluid clearance in the mouse.
Journal
American Journal of Physiology. Lung Cellular and Molecular Physiology
ISSN
1040-0605
Publication state
Published
Issued date
11/2008
Peer-reviewed
Oui
Volume
294
Number
3
Pages
L409-416
Language
english
Abstract
Transepithelial alveolar sodium (Na+) transport mediated by the amiloride-sensitive epithelial sodium channel (ENaC) constitutes the driving force for removal of fluid from the alveolar space. To define the role of the beta-ENaC subunit in vivo in the mature lung, we studied a previously established mouse strain harboring a disruption of the beta-ENaC gene locus resulting in low levels of beta-ENaC mRNA expression. Real-time RT-PCR experiments confirmed that beta-ENaC mRNA levels were decreased by >90% in alveolar epithelial cells from homozygous mutant (m/m) mice. beta-ENaC protein was undetected in lung homogenates from m/m mice by Western blotting, but alpha- and gamma-ENaC proteins were increased by 83% and 45%, respectively, compared with wild-type (WT) mice. At baseline, Na+-driven alveolar fluid clearance (AFC) was significantly reduced by 32% in m/m mice. Amiloride at the concentration 1 mM inhibited AFC by 75% and 34% in WT and m/m mice, respectively, whereas a higher concentration (5 mM) induced a 75% inhibition of AFC in both groups. The beta2-agonist terbutaline significantly increased AFC in WT but not in m/m mice. These results show that despite the compensatory increase in alpha- and gamma-ENaC protein expression observed in mutant mouse lung, low expression of beta-ENaC results in a moderate impairment of baseline AFC and in decreased AFC sensitivity to amiloride, suggesting a possible change in the stoichiometry of ENaC channels. Finally, adequate beta-ENaC expression appears to be required for AFC stimulation by beta2-agonists.
Keywords
Animals, Epithelial Sodium Channel, Extravascular Lung Water, Gene Expression, Mice, Mice, Transgenic, Mutation, Protein Subunits, Pulmonary Alveoli, RNA, Messenger, Terbutaline
Pubmed
Web of science
Create date
24/01/2008 13:00
Last modification date
23/11/2020 11:06