Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry.

Details

Serval ID
serval:BIB_C52AB826EFF3
Type
Article: article from journal or magazin.
Collection
Publications
Title
Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry.
Journal
Physiological measurement
Author(s)
Binzoni T., Tchernin D., Richiardi J., Van De Ville D., Hyacinthe J.N.
ISSN
1361-6579 (Electronic)
ISSN-L
0967-3334
Publication state
Published
Issued date
07/2012
Peer-reviewed
Oui
Volume
33
Number
7
Pages
1181-1197
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Abstract
Using a small, but very instructive experiment, it is demonstrated that laser-Doppler flowmetry (LDF) at large interoptode spacing represents a unique tool for new investigations of thermoregulatory processes modulating the blood flow of small muscle masses in humans. It is shown on five healthy subjects that steady-state values of blood flow (perfusion) in the thenar eminence muscle group depend in a complex manner on both the local intramuscular temperature and local skin temperature, while the values of blood flow parameters measured during physiological transients, such as the post-ischaemic hyperhaemic response, depend only on the intramuscular temperature. In addition, it is shown that the so-called biological zero (i.e. remaining LDF signal during arterial occlusion) is influenced not only as expected by the intramuscular temperature, but also by the skin temperature. The proposed results reveal that the skeletal muscle has unique thermoregulatory characteristics compared, for example, to human skin. These and other observations represent new findings and we hope that they will serve as a stimulus for the creation of new experimental protocols leading to better understanding of blood flow regulation.
Keywords
Adult, Body Temperature/physiology, Hand/diagnostic imaging, Hand/physiology, Hemodynamics/physiology, Humans, Ischemia/physiopathology, Laser-Doppler Flowmetry/methods, Muscle, Skeletal/blood supply, Muscle, Skeletal/diagnostic imaging, Muscle, Skeletal/physiology, Reperfusion, Time Factors, Ultrasonography
Pubmed
Web of science
Create date
06/12/2018 16:07
Last modification date
20/08/2019 15:40
Usage data