Experimental and theoretical investigations regarding the estimation of fracture compliance from full-waveform sonic log data
Details
Serval ID
serval:BIB_C406726FC6CC
Type
PhD thesis: a PhD thesis.
Collection
Publications
Institution
Title
Experimental and theoretical investigations regarding the estimation of fracture compliance from full-waveform sonic log data
Director(s)
Holliger Klaus
Codirector(s)
Caspari Eva
Institution details
Université de Lausanne, Faculté des géosciences et de l'environnement
Publication state
Accepted
Issued date
2023
Language
english
Abstract
Les fractures ubiquitaires dans la croûte supérieure de la Terre sont généralement beaucoup plus souples et beaucoup plus perméables que la roche environnante. En conséquence, elles ont tendance à dominer les propriétés mécaniques et hydrauliques des volumes de roche qui les hébergent. La détection, la caractérisation et la surveillance de ces fractures sont essentielles pour diverses applications, notamment l'exploration des hydrocarbures, la production d'énergie géothermique et le stockage des déchets nucléaires. Parmi les différentes techniques développées pour la caractérisation des fractures, les approches sismiques et apparentées suscitent une attention significative en raison de leurs avantages distincts, tels que la pénétration profonde, la haute résolution et la non-invasivité, comparativement aux approches plus conventionnelles. Malgré le fait que les ouvertures des fractures soient très probablement plus petites que les longueurs d'onde sismiques prédominantes, leurs influences sur les ondes sismiques en termes d'amplitudes et de vitesses sont observables. Surtout, ces réponses sismiques sont associées à des propriétés mécaniques clés des fractures, qui, à leur tour, offrent la possibilité d'inférer la conformité des fractures. Cette thèse se concentre sur l'estimation de la conformité des fractures en utilisant les ondes P- et S-critiquement réfractées à partir de données sismiques à forme d'onde complète (FWS). Dans le cadre du modèle de glissement linéaire (LSM), qui vise à quantifier l'impact des fractures sur la propagation des ondes sismiques, j'évalue la performance de trois techniques pour estimer la conformité normale des fractures horizontales individuelles en présence d'hétérogénéité de fond : les méthodes de transmission, de retard de phase et de retard de groupe. L'application à des données FWS standard de type production révèle que la méthode de retard de phase, indépendante de l'amplitude, est plus robuste que le schéma de transmission. La méthode de retard de phase est ensuite étendue pour calculer à la fois les conformités normales et de cisaillement pour des fractures inclinées individuelles en incorporant l'inclinaison des fractures. Les applications aux données FWS synthétiques et de terrain indiquent que la conformité au cisaillement est plus sensible à l'inclinaison des fractures que la conformité normale ; ce qui révèle que l'inclinaison des fractures doit être prise en compte pour des estimations fiables de la conformité au cisaillement. Pour généraliser davantage l'application de la méthode de retard de phase, elle est étendue à des scénarios impliquant plusieurs fractures en supposant que les retards de phase des ondes P et S induits par les fractures sont cumulatifs.
--
The ubiquitous fractures in Earth's upper crust are typically much more compliant and much more permeable than the embedding rock. Correspondingly, they tend to dominate the mechanical and hydraulic properties of their host rock volumes. The detection, characterization, and monitoring of these fractures are essential for various applications, including hydrocarbon exploration, geothermal energy production, and nuclear waste storage. Among various techniques developed for fracture characterization, seismic and related approaches attract significant attention due to their distinct advantages, such as deep penetration, high resolution, and non-invasiveness, compared to more conventional approaches. Despite the fact that the fracture apertures are most likely smaller than the prevailing seismic wavelengths, their influences on seismic waves in terms of amplitudes and velocities, are observable. Most importantly, these seismic responses are associated with key fracture mechanical properties, which, in tum, offer the potential to infer fracture compliance. This thesis focuses on fracture compliance estimation using critically refracted P- and S-waves from full-waveform sonic (FWS) data. Under the framework of the linear slip model (LSM), which aims to quantify the impact of fractures on seismic wave propagation, I assess the performance of three techniques, for estimating the normal compliance of individual horizontal fractures in the presence of background heterogeneity: the transmission, phase delay, and group delay methods. Application to standard, production-type FWS data reveals that the amplitudeindependent phase delay method is more robust than the transmission scheme. The phase delay method is then expanded to compute both normal and shear compliances for individual inclined fractures by incorporating fracture inclination. Applications to synthetic and field FWS data indicate that the shear compliance is more sensitive to fracture inclination than the normal one, which reveals that the fracture inclination must be taken into account for reliable shear compliance estimates. To further generalize the application of the phase delay method, it is extended to scenarios involving multiple fractures under the assumption that fracture-induced P- and S-wave phase delays are cumulative.
--
The ubiquitous fractures in Earth's upper crust are typically much more compliant and much more permeable than the embedding rock. Correspondingly, they tend to dominate the mechanical and hydraulic properties of their host rock volumes. The detection, characterization, and monitoring of these fractures are essential for various applications, including hydrocarbon exploration, geothermal energy production, and nuclear waste storage. Among various techniques developed for fracture characterization, seismic and related approaches attract significant attention due to their distinct advantages, such as deep penetration, high resolution, and non-invasiveness, compared to more conventional approaches. Despite the fact that the fracture apertures are most likely smaller than the prevailing seismic wavelengths, their influences on seismic waves in terms of amplitudes and velocities, are observable. Most importantly, these seismic responses are associated with key fracture mechanical properties, which, in tum, offer the potential to infer fracture compliance. This thesis focuses on fracture compliance estimation using critically refracted P- and S-waves from full-waveform sonic (FWS) data. Under the framework of the linear slip model (LSM), which aims to quantify the impact of fractures on seismic wave propagation, I assess the performance of three techniques, for estimating the normal compliance of individual horizontal fractures in the presence of background heterogeneity: the transmission, phase delay, and group delay methods. Application to standard, production-type FWS data reveals that the amplitudeindependent phase delay method is more robust than the transmission scheme. The phase delay method is then expanded to compute both normal and shear compliances for individual inclined fractures by incorporating fracture inclination. Applications to synthetic and field FWS data indicate that the shear compliance is more sensitive to fracture inclination than the normal one, which reveals that the fracture inclination must be taken into account for reliable shear compliance estimates. To further generalize the application of the phase delay method, it is extended to scenarios involving multiple fractures under the assumption that fracture-induced P- and S-wave phase delays are cumulative.
Keywords
Fracture characterization, normal and shear compliances, full-waveform sonic data, critically refracted P- and S-waves, tube wave, Caractérisation des fractures, conformités normale et de cisaillement, données sismiques à forme d'onde complète, ondes P et S critiquement réfractées, onde tubulaire
Create date
30/04/2024 10:17
Last modification date
01/05/2024 6:08