A real-time optimal inverse planning for Gamma Knife radiosurgery by convex optimization: description of the system and first dosimetry data.
Details
Serval ID
serval:BIB_BEA92414B51A
Type
Article: article from journal or magazin.
Publication sub-type
Review (review): journal as complete as possible of one specific subject, written based on exhaustive analyses from published work.
Collection
Publications
Institution
Title
A real-time optimal inverse planning for Gamma Knife radiosurgery by convex optimization: description of the system and first dosimetry data.
Journal
Journal of neurosurgery
ISSN
1933-0693 (Electronic)
ISSN-L
0022-3085
Publication state
Published
Issued date
01/12/2018
Peer-reviewed
Oui
Volume
129
Number
Suppl1
Pages
111-117
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Abstract
OBJECTIVEThe authors developed a new, real-time interactive inverse planning approach, based on a fully convex framework, to be used for Gamma Knife radiosurgery.METHODSThe convex framework is based on the precomputation of a dictionary composed of the individual dose distributions of all possible shots, considering all their possible locations, sizes, and shapes inside the target volume. The convex problem is solved to determine the plan, i.e., which shots and with which weights, that will actually be used, considering a sparsity constraint on the shots to fulfill the constraints while minimizing the beam-on time. The system is called IntuitivePlan and allows data to be transferred from generated dose plans into the Gamma Knife treatment planning software for further dosimetry evaluation.RESULTSThe system has been very efficiently implemented, and an optimal plan is usually obtained in less than 1 to 2 minutes, depending on the complexity of the problem, on a desktop computer or in only a few minutes on a high-end laptop. Dosimetry data from 5 cases, 2 meningiomas and 3 vestibular schwannomas, were generated with IntuitivePlan. Results of evaluation of the dosimetry characteristics are very satisfactory and adequate in terms of conformity, selectivity, gradient, protection of organs at risk, and treatment time.CONCLUSIONSThe possibility of using optimal, interactive real-time inverse planning in conjunction with the Leksell Gamma Knife opens new perspectives in radiosurgery, especially considering the potential use of the full capabilities of the latest generations of the Leksell Gamma Knife. This approach gives new users the possibility of using the system for easier and quicker access to good-quality plans with a shorter technical training period and opens avenues for new planning strategies for expert users. The use of a convex optimization approach allows an optimal plan to be provided in a very short processing time. This way, innovative graphical user interfaces can be developed, allowing the user to interact directly with the planning system to graphically define the desired dose map and to modify on-the-fly the dose map by moving, in a very user-friendly manner, the isodose surfaces of an initial plan. Further independent quantitative prospective evaluation comparing inverse planned and forward planned cases is warranted to validate this novel and promising treatment planning approach.
Keywords
Computers, Humans, Meningeal Neoplasms/radiotherapy, Meningioma/radiotherapy, Neuroma, Acoustic/radiotherapy, Radiometry, Radiosurgery/methods, Radiotherapy Dosage, Radiotherapy Planning, Computer-Assisted/methods, Software, Time Factors, GKRS = Gamma Knife radiosurgery, GUI = graphical user interface, Gamma Knife, LGK = Leksell Gamma Knife, LGP = Leksell GammaPlan, convex optimization, dosimetry, inverse planning, stereotactic radiosurgery
Pubmed
Web of science
Open Access
Yes
Create date
03/01/2019 11:28
Last modification date
18/09/2019 5:10