Identification and characterization of peripheral vascular color-coded DECT lesions in gout and non-gout patients: The VASCURATE study.
Details
Serval ID
serval:BIB_BE42796B8E06
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Identification and characterization of peripheral vascular color-coded DECT lesions in gout and non-gout patients: The VASCURATE study.
Journal
Seminars in arthritis and rheumatism
ISSN
1532-866X (Electronic)
ISSN-L
0049-0172
Publication state
Published
Issued date
08/2021
Peer-reviewed
Oui
Volume
51
Number
4
Pages
895-902
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Abstract
To characterize peripheral vascular plaques color-coded as monosodium urate (MSU) deposition by dual-energy computed tomography (DECT) and assess their association with the overall soft-tissue MSU crystal burden.
Patients with suspected crystal arthropathies were prospectively included in the CRYSTALILLE inception cohort to undergo baseline knees and ankles/feet DECT scans; treatment-naive gout patients initiating treat-to-target urate-lowering therapy (ULT) underwent repeated DECT scans with concomitant serum urate level measurements at 6 and 12 months. We determined the prevalence of DECT-based vascular MSU-coded plaques in knee arteries, and assessed their association with the overall DECT volumes of soft-tissue MSU crystal deposition and coexistence of arterial calcifications. DECT attenuation parameters of vascular MSU-coded plaques were compared with dense calcified plaques, control vessels, control soft tissues, and tophi.
We investigated 126 gout patients and 26 controls; 17 ULT-naive gout patients were included in the follow-up study. The prevalence of DECT-based vascular MSU-coded plaques was comparable in gout patients (24.6%) and controls (23.1%; p=0.87). Vascular MSU-coded plaques were strongly associated with coexisting arterial calcifications (p<0.001), but not with soft-tissue MSU deposition. Characterization of vascular MSU-coded plaques revealed specific differences in DECT parameters compared with control vessels, control soft tissues, and tophi. During follow-up, vascular MSU-coded plaques remained stable despite effective ULT (p=0.64), which decreased both serum urate levels and soft-tissue MSU volumes (p<0.001).
Our findings suggest that DECT-based MSU-coded plaques in peripheral arteries are strongly associated with calcifications and may not reflect genuine MSU crystal deposition. Such findings should therefore not be a primary target when managing gout patients.
Patients with suspected crystal arthropathies were prospectively included in the CRYSTALILLE inception cohort to undergo baseline knees and ankles/feet DECT scans; treatment-naive gout patients initiating treat-to-target urate-lowering therapy (ULT) underwent repeated DECT scans with concomitant serum urate level measurements at 6 and 12 months. We determined the prevalence of DECT-based vascular MSU-coded plaques in knee arteries, and assessed their association with the overall DECT volumes of soft-tissue MSU crystal deposition and coexistence of arterial calcifications. DECT attenuation parameters of vascular MSU-coded plaques were compared with dense calcified plaques, control vessels, control soft tissues, and tophi.
We investigated 126 gout patients and 26 controls; 17 ULT-naive gout patients were included in the follow-up study. The prevalence of DECT-based vascular MSU-coded plaques was comparable in gout patients (24.6%) and controls (23.1%; p=0.87). Vascular MSU-coded plaques were strongly associated with coexisting arterial calcifications (p<0.001), but not with soft-tissue MSU deposition. Characterization of vascular MSU-coded plaques revealed specific differences in DECT parameters compared with control vessels, control soft tissues, and tophi. During follow-up, vascular MSU-coded plaques remained stable despite effective ULT (p=0.64), which decreased both serum urate levels and soft-tissue MSU volumes (p<0.001).
Our findings suggest that DECT-based MSU-coded plaques in peripheral arteries are strongly associated with calcifications and may not reflect genuine MSU crystal deposition. Such findings should therefore not be a primary target when managing gout patients.
Keywords
Arthritis, Gouty, Follow-Up Studies, Gout/diagnostic imaging, Gout/drug therapy, Humans, Tomography, X-Ray Computed, Uric Acid, Atherosclerotic plaques, Dual-energy computed tomography, Gout, Monosodium urate crystals, Vascular deposition
Pubmed
Web of science
Create date
12/07/2021 12:37
Last modification date
23/02/2022 6:36