Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus × viridis Hybrid Zone in Southwestern New Mexico.

Details

Ressource 1Download: 27322321_BIB_BD5BD485BC4B.pdf (2296.02 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_BD5BD485BC4B
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus × viridis Hybrid Zone in Southwestern New Mexico.
Journal
Toxins
Author(s)
Zancolli G., Baker T.G., Barlow A., Bradley R.K., Calvete J.J., Carter K.C., de Jager K., Owens J.B., Price J.F., Sanz L., Scholes-Higham A., Shier L., Wood L., Wüster C.E., Wüster W.
ISSN
2072-6651 (Electronic)
ISSN-L
2072-6651
Publication state
Published
Issued date
16/06/2016
Peer-reviewed
Oui
Volume
8
Number
6
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Abstract
Venomous snakes often display extensive variation in venom composition both between and within species. However, the mechanisms underlying the distribution of different toxins and venom types among populations and taxa remain insufficiently known. Rattlesnakes (Crotalus, Sistrurus) display extreme inter- and intraspecific variation in venom composition, centered particularly on the presence or absence of presynaptically neurotoxic phospholipases A₂ such as Mojave toxin (MTX). Interspecific hybridization has been invoked as a mechanism to explain the distribution of these toxins across rattlesnakes, with the implicit assumption that they are adaptively advantageous. Here, we test the potential of adaptive hybridization as a mechanism for venom evolution by assessing the distribution of genes encoding the acidic and basic subunits of Mojave toxin across a hybrid zone between MTX-positive Crotalus scutulatus and MTX-negative C. viridis in southwestern New Mexico, USA. Analyses of morphology, mitochondrial and single copy-nuclear genes document extensive admixture within a narrow hybrid zone. The genes encoding the two MTX subunits are strictly linked, and found in most hybrids and backcrossed individuals, but not in C. viridis away from the hybrid zone. Presence of the genes is invariably associated with presence of the corresponding toxin in the venom. We conclude that introgression of highly lethal neurotoxins through hybridization is not necessarily favored by natural selection in rattlesnakes, and that even extensive hybridization may not lead to introgression of these genes into another species.
Keywords
Animals, Crotalid Venoms/chemistry, Crotalid Venoms/genetics, Crotalus/classification, Crotalus/genetics, DNA, Mitochondrial/genetics, Evolution, Molecular, Hybridization, Genetic, NADH Dehydrogenase/genetics, Neurotoxins/chemistry, Neurotoxins/genetics, New Mexico, Principal Component Analysis, Quantitative Trait, Heritable, Crotalus, Mojave toxin, adaptation, evolution, hybridization, introgression, molecular evolution, venom
Pubmed
Web of science
Open Access
Yes
Create date
09/06/2022 9:50
Last modification date
23/11/2022 7:14
Usage data