Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma.

Details

Ressource 1Download: 38092727.pdf (2330.36 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_BB6528AF99FD
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma.
Journal
Nature communications
Author(s)
Calderaro J., Ghaffari Laleh N., Zeng Q., Maille P., Favre L., Pujals A., Klein C., Bazille C., Heij L.R., Uguen A., Luedde T., Di Tommaso L., Beaufrère A., Chatain A., Gastineau D., Nguyen C.T., Nguyen-Canh H., Thi K.N., Gnemmi V., Graham R.P., Charlotte F., Wendum D., Vij M., Allende D.S., Aucejo F., Diaz A., Rivière B., Herrero A., Evert K., Calvisi D.F., Augustin J., Leow W.Q., Leung HHW, Boleslawski E., Rela M., François A., Cha A.W., Forner A., Reig M., Allaire M., Scatton O., Chatelain D., Boulagnon-Rombi C., Sturm N., Menahem B., Frouin E., Tougeron D., Tournigand C., Kempf E., Kim H., Ningarhari M., Michalak-Provost S., Gopal P., Brustia R., Vibert E., Schulze K., Rüther D.F., Weidemann S.A., Rhaiem R., Pawlotsky J.M., Zhang X., Luciani A., Mulé S., Laurent A., Amaddeo G., Regnault H., De Martin E., Sempoux C., Navale P., Westerhoff M., Lo R.C., Bednarsch J., Gouw A., Guettier C., Lequoy M., Harada K., Sripongpun P., Wetwittayaklang P., Loménie N., Tantipisit J., Kaewdech A., Shen J., Paradis V., Caruso S., Kather J.N.
ISSN
2041-1723 (Electronic)
ISSN-L
2041-1723
Publication state
Published
Issued date
14/12/2023
Peer-reviewed
Oui
Volume
14
Number
1
Pages
8290
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
Primary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICCA). Combined hepatocellular- cholangiocarcinomas (cHCC-CCA) exhibit equivocal or mixed features of both, causing diagnostic uncertainty and difficulty in determining proper management. Here, we perform a comprehensive deep learning-based phenotyping of multiple cohorts of patients. We show that deep learning can reproduce the diagnosis of HCC vs. CCA with a high performance. We analyze a series of 405 cHCC-CCA patients and demonstrate that the model can reclassify the tumors as HCC or ICCA, and that the predictions are consistent with clinical outcomes, genetic alterations and in situ spatial gene expression profiling. This type of approach could improve treatment decisions and ultimately clinical outcome for patients with rare and biphenotypic cancers such as cHCC-CCA.
Keywords
Humans, Carcinoma, Hepatocellular/diagnosis, Carcinoma, Hepatocellular/genetics, Carcinoma, Hepatocellular/pathology, Liver Neoplasms/diagnosis, Liver Neoplasms/genetics, Liver Neoplasms/pathology, Deep Learning, Cholangiocarcinoma/genetics, Cholangiocarcinoma/pathology, Bile Ducts, Intrahepatic, Bile Duct Neoplasms/diagnosis, Bile Duct Neoplasms/genetics, Bile Duct Neoplasms/pathology, Retrospective Studies
Pubmed
Web of science
Open Access
Yes
Create date
15/12/2023 8:52
Last modification date
10/01/2024 7:15
Usage data