Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase.

Details

Serval ID
serval:BIB_BA2031225770
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase.
Journal
Circulation
Author(s)
Duplain H., Burcelin R., Sartori C., Cook S., Egli M., Lepori M., Vollenweider P., Pedrazzini T., Nicod P., Thorens B., Scherrer U.
ISSN
1524-4539[electronic]
Publication state
Published
Issued date
07/2001
Volume
104
Number
3
Pages
342-345
Language
english
Abstract
BACKGROUND: Insulin resistance and arterial hypertension are related, but the underlying mechanism is unknown. Endothelial nitric oxide synthase (eNOS) is expressed in skeletal muscle, where it may govern metabolic processes, and in the vascular endothelium, where it regulates arterial pressure. METHODS AND RESULTS: To study the role of eNOS in the control of the metabolic action of insulin, we assessed insulin sensitivity in conscious mice with disruption of the gene encoding for eNOS. eNOS(-/-) mice were hypertensive and had fasting hyperinsulinemia, hyperlipidemia, and a 40% lower insulin-stimulated glucose uptake than control mice. Insulin resistance in eNOS(-/-) mice was related specifically to impaired NO synthesis, because in equally hypertensive 1-kidney/1-clip mice (a model of renovascular hypertension), insulin-stimulated glucose uptake was normal. CONCLUSIONS: These results indicate that eNOS is important for the control not only of arterial pressure but also of glucose and lipid homeostasis. A single gene defect, eNOS deficiency, may represent the link between metabolic and cardiovascular disease.
Keywords
Animals, Arteries, Blood Flow Velocity, Blood Glucose, Body Weight, Disease Models, Animal, Glucose, Glucose Clamp Technique, Hindlimb, Homozygote, Hyperinsulinism, Hyperlipidemias, Hypertension, Hypertension, Renovascular, Insulin, Insulin Resistance, Mice, Mice, Knockout, Muscle, Skeletal, Nitrates, Nitric Oxide Synthase, Nitric Oxide Synthase Type II, Nitric Oxide Synthase Type III, Nitrites
Pubmed
Web of science
Create date
24/01/2008 13:41
Last modification date
20/08/2019 15:28
Usage data