Optically stimulated luminescence dating of heat retainer hearths from the Sahara: Insights into signal accumulation and measurement

Details

Serval ID
serval:BIB_AF94F6D4746E
Type
Article: article from journal or magazin.
Collection
Publications
Title
Optically stimulated luminescence dating of heat retainer hearths from the Sahara: Insights into signal accumulation and measurement
Journal
Quaternary Geochronology
Author(s)
Armitage S.J., Krishna A., Parker L.E., King G.E.
ISSN
1871-1014
Publication state
Published
Issued date
02/2019
Peer-reviewed
Oui
Volume
49
Pages
249-253
Language
english
Abstract
Heat retainer hearths are a prominent component of the Holocene archaeological record of a number of drylands. Rocks within these hearths were fired in antiquity, emptying the optically stimulated luminescence (OSL) source traps of mineral grains within the rock. Since partial bleaching and mixing of grains within a lithified heat retainer is impossible, these rocks offer the opportunity to test our understanding of OSL signal accumulation and measurement processes. First, we show that OSL ages calculated using grains size fractions from 4 to 11 μm up to 180–210 μm are indistinguishable for a single heat retainer, indicating that the environmental and instrumental dose rate correction factors routinely used in luminescence dating are accurate. Second, we used single-grain dose recovery and equivalent dose measurements to determine the overdispersion due to beta microdosimetry. For the heat retainers measured in this study, overdiseprsion due to beta microdosimetry ranges from 8.9 ± 1.8 to 20.3 ± 1.6%. Third, we investigate the impact of mechanical crushing on the measured equivalent dose from quartz, to test the potential of using this technique to liberate dateable material from heat retainers which are not acid soluble. A small (<1 Gy) but significant increase in equivalent dose is observed in crushed zero-age samples, but the equivalent doses of crushed and uncrushed Holocene quartzes are indistinguishable. We conclude that crushing is a viable method for extracting dateable material from a heat retainer, but that some knowledge of the dosimeter's mean grain size is required for calculation of an accurate environmental dose rate.
Keywords
Optically stimulated luminescence, Hearths, Dose rate, Microdosimetry, Crushing
Web of science
Funding(s)
Swiss National Science Foundation / PZ00P2-167960
Create date
13/08/2018 18:40
Last modification date
23/12/2022 15:25
Usage data