Periodicity of thalamic synchronized oscillations: the role of Ca2+-mediated upregulation of Ih.

Details

Serval ID
serval:BIB_AF8FA71349B8
Type
Article: article from journal or magazin.
Collection
Publications
Title
Periodicity of thalamic synchronized oscillations: the role of Ca2+-mediated upregulation of Ih.
Journal
Neuron
Author(s)
Lüthi A., McCormick D.A.
ISSN
0896-6273
Publication state
Published
Issued date
1998
Peer-reviewed
Oui
Volume
20
Number
3
Pages
553-563
Language
english
Abstract
Thalamocortical networks can generate both normal and abnormal patterns of synchronized network activity, such as spindle waves and spike-and-wave seizures. These periods of synchronized discharge are often separated by a silent, refractory phase of between 5 and 20 s. In vitro investigations have demonstrated that this refractory period is due in large part to the persistent activation of the hyperpolarization-activated cation current Ih in thalamocortical cells. Here, we show that increases in [Ca2+]i due to rebound Ca2+ bursts result in persistent activation of Ih resulting from a positive shift in the activation curve of this current. The dynamical upregulation and persistent activation of Ih is the critical determinant of the time course of the refractory period. These findings demonstrate that periodicity in neural network oscillations may be generated through an interaction between the electrophysiological properties and intracellular signaling pathways of the constituent neurons.
Keywords
Acetic Acids, Action Potentials, Adenosine Diphosphate, Animals, Calcium, Calcium Channels, Chelating Agents, Electric Stimulation, Ethylenediamines, Female, Ferrets, Male, Neurons, Patch-Clamp Techniques, Periodicity, Second Messenger Systems, Thalamus, Up-Regulation
Pubmed
Web of science
Open Access
Yes
Create date
26/02/2009 15:48
Last modification date
20/08/2019 16:19
Usage data