Using rare genetic mutations to revisit structural brain asymmetry.

Details

Serval ID
serval:BIB_ADB6BC71C850
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Using rare genetic mutations to revisit structural brain asymmetry.
Journal
Nature communications
Author(s)
Kopal J., Kumar K., Shafighi K., Saltoun K., Modenato C., Moreau C.A., Huguet G., Jean-Louis M., Martin C.O., Saci Z., Younis N., Douard E., Jizi K., Beauchamp-Chatel A., Kushan L., Silva A.I., van den Bree MBM, Linden DEJ, Owen M.J., Hall J., Lippé S., Draganski B., Sønderby I.E., Andreassen O.A., Glahn D.C., Thompson P.M., Bearden C.E., Zatorre R., Jacquemont S., Bzdok D.
ISSN
2041-1723 (Electronic)
ISSN-L
2041-1723
Publication state
Published
Issued date
26/03/2024
Peer-reviewed
Oui
Volume
15
Number
1
Pages
2639
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.
Keywords
Humans, DNA Copy Number Variations, Genome-Wide Association Study, Functional Laterality, Brain Mapping, Brain, Magnetic Resonance Imaging
Pubmed
Open Access
Yes
Create date
02/04/2024 10:26
Last modification date
03/04/2024 7:08
Usage data