Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa.

Details

Serval ID
serval:BIB_ACFC7D6DD09D
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa.
Journal
Ecology
Author(s)
Treier U.A., Broennimann O., Normand S., Guisan A., Schaffner U., Steinger T., Müller-Schärer H.
ISSN
0012-9658 (Print)
ISSN-L
0012-9658
Publication state
Published
Issued date
2009
Peer-reviewed
Oui
Volume
90
Number
5
Pages
1366-1377
Language
english
Abstract
Polyploidy is often assumed to increase the spread and thus the success of alien plant species, but few empirical studies exist. We tested this hypothesis with Centaurea maculosa Lam., a species native to Europe and introduced into North America approximately 120 years ago where it became highly invasive. We analyzed the ploidy level of more than 2000 plants from 93 native and 48 invasive C. maculosa populations and found a pronounced shift in the relative frequency of diploid and tetraploid cytotypes. In Europe diploid populations occur in higher frequencies than tetraploids and only four populations had both cytotypes, while in North America diploid plants were found in only one mixed population and thus tetraploids clearly dominated. Our results showed a pronounced shift in the climatic niche between tetraploid populations in the native and introduced range toward drier climate in North America and a similar albeit smaller shift between diploids and tetraploids in the native range. The field data indicate that diploids have a predominately monocarpic life cycle, while tetraploids are often polycarpic. Additionally, the polycarpic life-form seems to be more prevalent among tetraploids in the introduced range than among tetraploids in the native range. Our study suggests that both ploidy types of C. maculosa were introduced into North America, but tetraploids became the dominant cytotype with invasion. We suggest that the invasive success of C. maculosa is partly due to preadaptation of the tetraploid cytotype in Europe to drier climate and possibly further adaptation to these conditions in the introduced range. The potential for earlier and longer seed production associated with the polycarpic life cycle constitutes an additional factor that may have led to the dominance of tetraploids over diploids in the introduced range.
Keywords
Biological Evolution, Canada, Centaurea/genetics, Centaurea/physiology, Demography, Ecosystem, Europe, Polyploidy, United States
Pubmed
Web of science
Create date
23/08/2008 11:11
Last modification date
20/08/2019 15:16
Usage data