Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision.

Details

Serval ID
serval:BIB_AAC3192F87A0
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision.
Journal
Molecular and Cellular Neurosciences
Author(s)
Willi-Monnerat S., Migliavacca E., Surdez D., Delorenzi M., Luthi-Carter R., Terskikh A.V.
ISSN
1095-9327 (Electronic)
ISSN-L
1044-7431
Publication state
Published
Issued date
2008
Volume
37
Number
4
Pages
845-856
Language
english
Abstract
The elucidation of mechanisms underlying telencephalic neural development has been limited by the lack of knowledge regarding the molecular and cellular aspects of the ganglionic eminence (GE), an embryonic structure that supplies the brain with diverse sets of GABAergic neurons. Here, we report a comprehensive transcriptomic analysis of this structure including its medial (MGE), lateral (LGE) and caudal (CGE) subdivisions and its temporal dynamics in 12.5 to 16 day-old rat embryos. Surprisingly, comparison across subdivisions showed that CGE gene expression was the most unique providing unbiased genetic evidence for its differentiation from MGE and LGE. The molecular signature of the CGE comprised a large set of genes, including Rwdd3, Cyp26b1, Nr2f2, Egr3, Cpta1, Slit3, and Hod, of which several encode cell signaling and migration molecules such as WNT5A, DOCK9, VSNL1 and PRG1. Temporal analysis of the MGE revealed differential expression of unique sets of cell specification and migration genes, with early expression of Hes1, Lhx2, Ctgf and Mdk, and late enrichment of Olfm3, SerpinE2 and Wdr44. These GE profiles reveal new candidate regulators of spatiotemporally governed GABAergic neuronogenesis.
Keywords
Animals, Cerebral Cortex/embryology, Cerebral Cortex/physiology, Female, Gene Expression Profiling/methods, Median Eminence/embryology, Median Eminence/physiology, Pregnancy, Rats, Rats, Sprague-Dawley, Time Factors
Pubmed
Web of science
Create date
15/12/2010 11:43
Last modification date
20/08/2019 16:14
Usage data