A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland
Details
Download: JGR Earth Surface - 2016 - Fleurian - A modeling study of the effect of runoff variability on the effective pressure.pdf (1608.04 [Ko])
State: Public
Version: Final published version
License: CC BY-NC-ND 4.0
State: Public
Version: Final published version
License: CC BY-NC-ND 4.0
Serval ID
serval:BIB_A6DE33728541
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland
Journal
Journal of Geophysical Research: Earth Surface
ISSN
2169-9003
2169-9011
2169-9011
Publication state
Published
Issued date
10/2016
Peer-reviewed
Oui
Volume
121
Number
10
Pages
1834-1848
Language
english
Abstract
Basal sliding is a main control on glacier flow primarily driven by water pressure at the glacier base. The ongoing increase in surface melting of the Greenland Ice Sheet warrants an examination of its impact on basal water pressure and in turn on basal sliding. Here we examine the case of Russell Glacier, in West Greenland, where an extensive set of observations has been collected. These observations suggest that the recent increase in melt has had an equivocal impact on the annual velocity, with stable flow on the lower part of the drainage basin but accelerated flow above the Equilibrium Line Altitude (ELA). These distinct behaviors have been attributed to different evolutions of the subglacial draining system during and after the melt season. Here we use a high-resolution subglacial hydrological model forced by reconstructed surface runoff for the period 2008 to 2012 to investigate the cause of these distinct behaviors. We find that the increase in meltwater production at low elevation yields a more efficient drainage system compatible with the observed stagnation of the mean annual flow below the ELA. At higher elevation, the model indicates that the drainage system is mostly inefficient and is therefore strongly sensitive to an increase in meltwater availability, which is consistent with the observed increase in ice velocity.
Keywords
subglacial hydrology, glacier dynamics, modeling, ice sheet modeling
Web of science
Open Access
Yes
Create date
29/08/2024 10:03
Last modification date
25/11/2024 16:52