Opposing function of MYBBP1A in proliferation and migration of head and neck squamous cell carcinoma cells.

Details

Ressource 1Download: BIB_A502122AF2AA.P001.pdf (4701.68 [Ko])
State: Public
Version: author
Serval ID
serval:BIB_A502122AF2AA
Type
Article: article from journal or magazin.
Collection
Publications
Title
Opposing function of MYBBP1A in proliferation and migration of head and neck squamous cell carcinoma cells.
Journal
BMC Cancer
Author(s)
Acuña Sanhueza G.A., Faller L., George B., Koffler J., Misetic V., Flechtenmacher C., Dyckhoff G., Plinkert P.P., Angel P., Simon C., Hess J.
ISSN
1471-2407 (Electronic)
ISSN-L
1471-2407
Publication state
Published
Issued date
2012
Volume
12
Number
72
Pages
1-10
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't Publication Status: epublish. PDF type: Research article
Abstract
BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent and lethal cancers worldwide and mortality mostly results from loco-regional recurrence and metastasis. Despite its significance, our knowledge on molecular, cellular and environmental mechanisms that drive disease pathogenesis remains largely elusive, and there are limited therapeutic options, with only negligible clinical benefit.
METHODS: We applied global gene expression profiling with samples derived from a recently established mouse model for oral cancer recurrence and identified a list of genes with differential expression between primary and recurrent tumors.
RESULTS: One differentially expressed gene codes for Myb-binding protein 1a (MYBBP1A), which is known as a transcriptional co-regulator that physically interacts with nuclear transcription factors, such as NFκB and p53. We confirmed significantly reduced MYBBP1A protein levels on tissue sections of recurrent mouse tumors compared to primary tumors by immunohistochemistry, and found aberrant MYBBP1A protein levels also in tumor samples of HNSCC patients. Interestingly, silencing of MYBBP1A expression in murine SCC7 and in human HNSCC cell lines elicited increased migration but decreased cell growth.
CONCLUSION: We provide experimental evidence that MYBBP1A is an important molecular switch in the regulation of tumor cell proliferation versus migration in HNSCC and it will be a major challenge for the future to proof the concept whether regulation MYBBP1A expression and/or function could serve as a novel option for anti-cancer therapy.
Keywords
Animals, Blotting, Western, Carcinoma, Squamous Cell/genetics, Carcinoma, Squamous Cell/metabolism, Cell Line, Tumor, Cell Movement, Cell Proliferation, Disease Models, Animal, Gene Expression Profiling, Humans, Immunohistochemistry, Mice, Mouth Neoplasms/genetics, Mouth Neoplasms/metabolism, Neoplasm Recurrence, Local/genetics, Neoplasm Recurrence, Local/metabolism, Nuclear Proteins/genetics, Nuclear Proteins/metabolism, Nucleocytoplasmic Transport Proteins/genetics, Nucleocytoplasmic Transport Proteins/metabolism, Real-Time Polymerase Chain Reaction
Pubmed
Web of science
Open Access
Yes
Create date
04/06/2013 9:12
Last modification date
20/08/2019 15:10
Usage data