Is hybridization driving the evolution of climatic niche in Alyssum montanum.

Details

Serval ID
serval:BIB_A49D942D5B81
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Is hybridization driving the evolution of climatic niche in Alyssum montanum.
Journal
American journal of botany
Author(s)
Arrigo N., de La Harpe M., Litsios G., Zozomová-Lihová J., Španiel S., Marhold K., Barker M.S., Alvarez N.
ISSN
1537-2197 (Electronic)
ISSN-L
0002-9122
Publication state
Published
Issued date
07/2016
Peer-reviewed
Oui
Volume
103
Number
7
Pages
1348-1357
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
After decades of interest, the contribution of hybridization to ecological diversification remains unclear. Hybridization is a potent source of novelty, but nascent hybrid lineages must overcome reproductive and ecological competition from their parental species. Here, we assess whether hybrid speciation is advantageous over alternative modes of speciation, by comparing the geographical and ecological ranges and climatic niche evolutionary rates of stabilized allopolyploid vs. autopolyploids in the Alyssum montanum species complex.
We combined an extensive review of studies addressing the systematics and genetic diversity of A. montanum s.l., with flow cytometry and cloning of nuclear markers, to establish the ploidy level and putative hybrid nature of 205 populations. The respective geographic distribution and climatic niche evolution dynamics of the allo- and autopolyploids were investigated using multivariate analyses and comparative phylogenetic approaches.
As expected by theory, allopolyploids occur mainly along contact zones and are generally spatially overlapping with their diploid counterparts. However, they demonstrate higher rates of niche evolution and expand into different climatic conditions than those of their diploid congeners. In contrast, autopolyploids show lower rates of niche evolution, occupy ecological niches similar to their ancestors and are restricted to less competitive and peripheral geographic areas.
Hybridization thus seems advantageous by promoting ecological niche evolution and more readily allowing escape from competitive exclusion.

Keywords
Biological Evolution, Brassicaceae/genetics, Climate, Diploidy, Ecology, Genetic Variation, Geography, Hybridization, Genetic, Phylogeny, Ploidies, Brassicaceae, allopolyploidy, autopolyploidy, competition, diversification, ecological novelty, local adaptation, minority cytotype disadvantage, transgressive segregation
Pubmed
Web of science
Open Access
Yes
Create date
22/03/2016 11:48
Last modification date
20/08/2019 16:10
Usage data