A single epidermal stem cell strategy for safe ex vivo gene therapy.

Details

Ressource 1Download: 25724200_BIB_A482C5A3A43D.pdf (3644.91 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_A482C5A3A43D
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
A single epidermal stem cell strategy for safe ex vivo gene therapy.
Journal
Embo Molecular Medicine
Author(s)
Droz-Georget Lathion S., Rochat A., Knott G., Recchia A., Martinet D., Benmohammed S., Grasset N., Zaffalon A., Besuchet Schmutz N., Savioz-Dayer E., Beckmann J.S., Rougemont J., Mavilio F., Barrandon Y.
ISSN
1757-4684 (Electronic)
ISSN-L
1757-4676
Publication state
Published
Issued date
2015
Peer-reviewed
Oui
Volume
7
Number
4
Pages
380-393
Language
english
Notes
Publication types: Journal Article Publication Status: epublish
Abstract
There is a widespread agreement from patient and professional organisations alike that the safety of stem cell therapeutics is of paramount importance, particularly for ex vivo autologous gene therapy. Yet current technology makes it difficult to thoroughly evaluate the behaviour of genetically corrected stem cells before they are transplanted. To address this, we have developed a strategy that permits transplantation of a clonal population of genetically corrected autologous stem cells that meet stringent selection criteria and the principle of precaution. As a proof of concept, we have stably transduced epidermal stem cells (holoclones) obtained from a patient suffering from recessive dystrophic epidermolysis bullosa. Holoclones were infected with self-inactivating retroviruses bearing a COL7A1 cDNA and cloned before the progeny of individual stem cells were characterised using a number of criteria. Clonal analysis revealed a great deal of heterogeneity among transduced stem cells in their capacity to produce functional type VII collagen (COLVII). Selected transduced stem cells transplanted onto immunodeficient mice regenerated a non-blistering epidermis for months and produced a functional COLVII. Safety was assessed by determining the sites of proviral integration, rearrangements and hit genes and by whole-genome sequencing. The progeny of the selected stem cells also had a diploid karyotype, was not tumorigenic and did not disseminate after long-term transplantation onto immunodeficient mice. In conclusion, a clonal strategy is a powerful and efficient means of by-passing the heterogeneity of a transduced stem cell population. It guarantees a safe and homogenous medicinal product, fulfilling the principle of precaution and the requirements of regulatory affairs. Furthermore, a clonal strategy makes it possible to envision exciting gene-editing technologies like zinc finger nucleases, TALENs and homologous recombination for next-generation gene therapy.
Pubmed
Web of science
Open Access
Yes
Create date
01/05/2015 17:49
Last modification date
30/04/2021 7:13
Usage data