Docking and Molecular Dynamics Predictions of Pesticide Binding to the Calyx of Bovine β-Lactoglobulin.

Details

Serval ID
serval:BIB_A353F3BF5A29
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Docking and Molecular Dynamics Predictions of Pesticide Binding to the Calyx of Bovine β-Lactoglobulin.
Journal
International journal of molecular sciences
Author(s)
Cortes-Hernandez P., Vázquez Nuñez R., Domínguez-Ramírez L.
ISSN
1422-0067 (Electronic)
ISSN-L
1422-0067
Publication state
Published
Issued date
14/03/2020
Peer-reviewed
Oui
Volume
21
Number
6
Pages
1988
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
Pesticides are used extensively in agriculture, and their residues in food must be monitored to prevent toxicity. The most abundant protein in cow's milk, β-lactoglobulin (BLG), shows high affinity for diverse hydrophobic ligands in its central binding pocket, called the calyx. Several of the most frequently used pesticides are hydrophobic. To predict if BLG may be an unintended carrier for pesticides, we tested its ability to bind 555 pesticides and their isomers, for a total of 889 compounds, in a rigid docking screen. We focused on the analysis of 60 unique molecules belonging to the five pesticide classes defined by the World Health Organization, that docked into BLG's calyx with ΔGs ranging from -8.2 to -12 kcal mol <sup>-1</sup> , chosen by statistical criteria. These "potential ligands" were further analyzed using molecular dynamic simulations, and the binding energies were explored with Molecular Mechanics/Generalized Born/Surface Area (MMGBSA). Hydrophobic pyrethroid insecticides, like cypermethrin, were found to bind as deeply and tightly into the calyx as BLG's natural ligand, palmitate; while polar compounds, like paraquat, were expelled. Our results suggest that BLG could be a carrier for pesticides, in particular for pyrethroid insecticides, allowing for their accumulation in cow's milk beyond their solubility restrictions. This analysis opens possibilities for pesticide biosensor design based on BLG.
Keywords
Animals, Cattle, Hydrophobic and Hydrophilic Interactions, Lactoglobulins/metabolism, Milk/chemistry, Molecular Dynamics Simulation, Pesticide Residues/analysis, Pesticide Residues/metabolism, Pyrethrins/metabolism, MMGBSA, cypermethrin, docking, molecular dynamics, pyrethroid pesticide
Pubmed
Web of science
Open Access
Yes
Create date
02/04/2020 16:53
Last modification date
17/02/2024 8:12
Usage data