In Vivo Reprogramming of C. elegans using genetic and chemical approaches
Details
Serval ID
serval:BIB_A1324C70C9D9
Type
PhD thesis: a PhD thesis.
Collection
Publications
Institution
Title
In Vivo Reprogramming of C. elegans using genetic and chemical approaches
Director(s)
Ocampo Alejandro
Codirector(s)
Diviani Dario
Institution details
Université de Lausanne, Faculté de biologie et médecine
Publication state
Accepted
Issued date
2024
Language
english
Abstract
Au cours de la dernière décennie, la reprogrammation cellulaire des cellules entièrement différenciées en cellules souches pluripotentes est devenue d'un grand intérêt. De manière importante, la reprogrammation cellulaire par l'expression d'Oct4, Sox2, Klf4 et cMyc (OSKM) peut améliorer les phénotypes associés au vieillissement dans plusieurs tissus et prolonger la durée de vie chez les souris progeroides et âgées. Cependant, les effets de la reprogrammation in vivo sur différents organismes restent peu étudiés. Ici, pour la première fois, nous induisons la reprogrammation in vivo chez C. elegans en utilisant un système inductible par la chaleur, observant une mort prématurée à divers stades de développement. Tout comme chez les souris, l'expression des facteurs de reprogrammation entraîne une mort prématurée avec différents niveaux de toxicité à des stades de développement et de vieillissement distincts. De manière intéressante, les différents degrés de toxicité sont inversement corrélés avec le développement et, très probablement, avec la plasticité cellulaire. Cependant, les applications translationnelles de cette approche génétique de reprogrammation sont limitées. Plus récemment, la reprogrammation chimique via des cocktails de petites molécules a démontré une capacité similaire à induire la pluripotence in vitro. Cependant, son impact potentiel sur le vieillissement est inconnu. Ici, nous avons démontré que la reprogrammation chimique partielle est capable d'améliorer des facteurs clés du vieillissement, notamment l'instabilité génomique et les altérations épigénétiques dans les cellules humaines âgées. De plus, nous avons identifié une combinaison optimisée de deux molécules de reprogrammation suffisante pour induire l'amélioration de phénotypes de vieillissement supplémentaires, notamment la sénescence cellulaire et le stress oxydatif. Importamment, l'application in vivo de cette combinaison de deux produits chimiques a significativement prolongé la durée de vie de C. elegans. Ensemble, ces résultats montrent que la reprogrammation in vivo chez C. elegans émerge comme un outil précieux pour affiner les stratégies de reprogrammation in vivo.
--
Over the past decade, cellular reprogramming has raised growing interest for the capacity to convert fully differentiated cells into pluripotent stem cells. Notably, the process involves the overexpression of specific genes, including Oct4, Sox2, Klf4, and cMyc (OSKM), which have shown to have the potential to reverse age-related traits in various tissues and prolong the lifespan in both progeroid and aged mice. Nevertheless, the effects of in vivo reprogramming in different organisms have been relatively understudied. During my thesis, I investigated for the first time in vivo reprogramming in C. elegans. Importantly, instead of rejuvenation effects, I observed premature death occurring at different developmental stages. In this line, the expression of reprogramming factors led to premature death in C. elegans, with varying levels of toxicity depending on the developmental stage and aging process. Interestingly, the extent of toxicity seemed to be inversely related to the developmental stage and likely cellular plasticity. Although the induction of in vivo reprogramming by overexpression of transcription factor might have therapeutic potential, its translational applications may be limited. Alternatively, recent advancements in chemical reprogramming using small molecule cocktails have shown potential for inducing pluripotency in vitro, however their impact on aging remains unclear. During my thesis, we aimed to address this gap by demonstrating that partial chemical reprogramming can mitigate key aging drivers, such as genomic instability and epigenetic alterations, in aged human cells. Furthermore, we identified an optimized combination of two reprogramming molecules capable of alleviating additional aging phenotypes, including cellular senescence and oxidative stress. Importantly, applying this two-chemical combination in vivo significantly extended the lifespan of C. elegans. Overall, my investigation of in vivo reprogramming in C. elegans highlight the potential risks and benefits of reprogramming as an interesting technology to reverse age- associated phenotypes and extend human health at old age.
--
Over the past decade, cellular reprogramming has raised growing interest for the capacity to convert fully differentiated cells into pluripotent stem cells. Notably, the process involves the overexpression of specific genes, including Oct4, Sox2, Klf4, and cMyc (OSKM), which have shown to have the potential to reverse age-related traits in various tissues and prolong the lifespan in both progeroid and aged mice. Nevertheless, the effects of in vivo reprogramming in different organisms have been relatively understudied. During my thesis, I investigated for the first time in vivo reprogramming in C. elegans. Importantly, instead of rejuvenation effects, I observed premature death occurring at different developmental stages. In this line, the expression of reprogramming factors led to premature death in C. elegans, with varying levels of toxicity depending on the developmental stage and aging process. Interestingly, the extent of toxicity seemed to be inversely related to the developmental stage and likely cellular plasticity. Although the induction of in vivo reprogramming by overexpression of transcription factor might have therapeutic potential, its translational applications may be limited. Alternatively, recent advancements in chemical reprogramming using small molecule cocktails have shown potential for inducing pluripotency in vitro, however their impact on aging remains unclear. During my thesis, we aimed to address this gap by demonstrating that partial chemical reprogramming can mitigate key aging drivers, such as genomic instability and epigenetic alterations, in aged human cells. Furthermore, we identified an optimized combination of two reprogramming molecules capable of alleviating additional aging phenotypes, including cellular senescence and oxidative stress. Importantly, applying this two-chemical combination in vivo significantly extended the lifespan of C. elegans. Overall, my investigation of in vivo reprogramming in C. elegans highlight the potential risks and benefits of reprogramming as an interesting technology to reverse age- associated phenotypes and extend human health at old age.
Create date
21/08/2024 11:25
Last modification date
15/10/2024 7:57