Trans-inhibition of glutamate transport prevents excitatory amino acid-induced glycolysis in astrocytes

Details

Serval ID
serval:BIB_9EE3DB925E5B
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Trans-inhibition of glutamate transport prevents excitatory amino acid-induced glycolysis in astrocytes
Journal
Brain Research
Author(s)
Debernardi  R., Magistretti  P. J., Pellerin  L.
ISSN
0006-8993 (Print)
Publication state
Published
Issued date
12/1999
Volume
850
Number
1-2
Pages
39-46
Notes
Journal Article
Research Support, Non-U.S. Gov't --- Old month value: Dec 11
Abstract
Previous studies have demonstrated that activation of glutamate transporters promotes glycolysis in astrocytes. Current evidence indicates that compounds such as threo-beta-hydroxyaspartate (THA) are both competitive inhibitors and substrates for glutamate transporters. In this study, we have analyzed the effect of THA on excitatory amino acid (EAA) transport and on EAA-induced glycolysis in mouse primary astrocyte cultures. In agreement with previous studies in rat astrocytes, THA competitively inhibited 3H-D-aspartate (3H-D-Asp) uptake with an IC50 of 319 microM (Ki = 36.6 microM). In contrast, it did not prevent D-aspartate-induced 3H-2-deoxyglucose (2DG) uptake in these conditions. Preexposure of cells to THA for at least 15 min revealed another form of glutamate transport inhibition. This effect was concentration-dependent with an apparent IC50 of 47.7 microM and showed kinetic characteristics consistent with a mechanism of trans-inhibition. Preincubation with THA also inhibited D-aspartate-induced 3H-2DG uptake in a concentration-dependent manner with an apparent IC50 of 59.8 microM. Comparison with other transportable analogues reveals that they share with THA the ability to cause trans-inhibition of glutamate transport and to prevent glutamate-stimulated glycolysis; THA, however, is unique in that it has no effect alone on glucose utilization after preexposure. These data indicate that trans-inhibition of glutamate transport may be a mechanism by which certain glutamate transport inhibitors can prevent the stimulation of aerobic glycolysis by glutamate in astrocytes.
Keywords
ATP-Binding Cassette Transporters/*antagonists & inhibitors Amino Acid Transport System X-AG Animals Animals, Newborn Anti-Bacterial Agents/pharmacology Aspartic Acid/analogs & derivatives/pharmacology Astrocytes/*drug effects/metabolism Biological Transport, Active/drug effects Cerebral Cortex/cytology/drug effects Deoxyglucose/metabolism Excitatory Amino Acids/*pharmacology Glucose/metabolism Glycolysis/*drug effects Kinetics Mice Phosphorylation Stereoisomerism
Pubmed
Web of science
Create date
24/01/2008 14:16
Last modification date
20/08/2019 16:05
Usage data