In vitro evaluation of staphylococcus aureus biofilm formation on bone grafts and bone substitues

Details

Serval ID
serval:BIB_9938C15159E5
Type
Inproceedings: an article in a conference proceedings.
Publication sub-type
Abstract (Abstract): shot summary in a article that contain essentials elements presented during a scientific conference, lecture or from a poster.
Collection
Publications
Institution
Title
In vitro evaluation of staphylococcus aureus biofilm formation on bone grafts and bone substitues
Title of the conference
EBJIS 2009, 28th Annual Meeting of the European Bone and Joint Infections Society
Author(s)
Clauss M., Borens O., Trampuz A.
Address
Vienna, Austria, September 17-19, 2009
ISBN
0301-620X
ISSN-L
0021-9355
Publication state
Published
Issued date
2011
Peer-reviewed
Oui
Volume
93-B
Series
Journal of Bone and Joint Surgery, British Volume Proceedings. Supplement
Pages
319
Language
english
Abstract
Background: Bacteria form a biofilm on the surface of orthopaedic devices, causing persistent and infection. Little is known about biofilms formation on bone grafts and bone substitutes. We analyzed various representative materials regarding their propensity for biofilm formation caused by Staphylococcus aureus.Methods: As bone graft beta-tricalciumphosphate (b-TCP, CyclOsTM) and as bone substitute a tantalum metal mesh (trabecular metalTM) and PMMA (Pala-cosTM) were investigated. As test organism S. aureus (strain ATCC 29213) was used. Test materials were incubated with bacterial solution of 105 colony-forming units (cfu)/ml at 37°C for 24 h without shaking. After 24 h, the test materials were removed and washed 3 times in normal saline, followed by sonication in 50 ml Ringer solution at 40 kHz for 5 minutes. The resulting sonication fluid was plated in aliquots of 0.1 ml onto aerobe blood agar with 5% sheep blood and incubated at 37°C with 5% CO2 for 24 h. Then, bacterial counts were enumerated and expressed as cfu/ml. All experiments were performed in triplicate to calculate the mean ± standard deviation. The Wilcoxon test was used for statistical calculations.Results: The three investigated materials show a differing specific surface with b-TCB>trabecular metal>PMMA per mm2. S. aureus formed biofilm on all test materials as confirmed by quantitative culture after washing and sonication. The bacterial counts in sonication fluid (in cfu/ml) were higher in b-TCP (5.1 x 106 ± 0.6 x 106) and trabecular metal (3.7 x 106 ± 0.6 x 106) than in PMMA (3.9 x 104 ± 1.8 x 104), p<0.05.Conclusion: Our results demonstrate that about 100-times more bacteria adhere on b-TCP and trabecular metal than on PMMA, reflecting the larger surface of b-TCP and trabecuar metal compared to the one of PMMA. This in-vitro data indicates that bone grafts are susceptible to infection. Further studies are needed to evaluate efficient approaches to prevent and treat infections associated with bone grafts and substitutes, including modification of the surface or antibacterial coating.
Create date
10/02/2012 15:23
Last modification date
20/08/2019 16:00
Usage data