The unfolded protein response: integrating stress signals through the stress sensor IRE1α.

Details

Serval ID
serval:BIB_979BF5228E3F
Type
Article: article from journal or magazin.
Publication sub-type
Review (review): journal as complete as possible of one specific subject, written based on exhaustive analyses from published work.
Collection
Publications
Institution
Title
The unfolded protein response: integrating stress signals through the stress sensor IRE1α.
Journal
Physiological Reviews
Author(s)
Hetz C., Martinon F., Rodriguez D., Glimcher L.H.
ISSN
1522-1210 (Electronic)
ISSN-L
0031-9333
Publication state
Published
Issued date
2011
Volume
91
Number
4
Pages
1219-1243
Language
english
Abstract
Stress induced by accumulation of unfolded proteins at the endoplasmic reticulum (ER) is a classic feature of secretory cells and is observed in many tissues in human diseases including cancer, diabetes, obesity, and neurodegeneration. Cellular adaptation to ER stress is achieved by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that transmits information about the protein folding status at the ER to the nucleus and cytosol to restore ER homeostasis. Inositol-requiring transmembrane kinase/endonuclease-1 (IRE1α), the most conserved UPR stress sensor, functions as an endoribonuclease that processes the mRNA of the transcription factor X-box binding protein-1 (XBP1). IRE1α signaling is a highly regulated process, controlled by the formation of a dynamic scaffold onto which many regulatory components assemble, here referred to as the UPRosome. Here we provide an overview of the signaling and regulatory mechanisms underlying IRE1α function and discuss the emerging role of the UPR in adaptation to protein folding stress in specialized secretory cells and in pathological conditions associated with alterations in ER homeostasis.
Keywords
DNA-Binding Proteins/physiology, Endoplasmic Reticulum/physiology, Endoribonucleases/physiology, Homeostasis/physiology, Humans, Protein Unfolding, Protein-Serine-Threonine Kinases/physiology, Signal Transduction/physiology, Stress, Physiological/physiology, Transcription Factors/physiology
Pubmed
Web of science
Create date
08/11/2011 16:38
Last modification date
20/08/2019 15:59
Usage data