Pharmacokinetic and pharmacodynamic analysis of efavirenz dose reduction using an in vitro-in vivo extrapolation model.

Details

Serval ID
serval:BIB_974D19D0A162
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Pharmacokinetic and pharmacodynamic analysis of efavirenz dose reduction using an in vitro-in vivo extrapolation model.
Journal
Clinical Pharmacology and Therapeutics
Author(s)
Siccardi M., Almond L., Schipani A., Csajka C., Marzolini C., Wyen C., Brockmeyer N.H., Boffito M., Owen A., Back D.
ISSN
1532-6535 (Electronic)
ISSN-L
0009-9236
Publication state
Published
Issued date
2012
Volume
92
Number
4
Pages
494-502
Language
english
Notes
Publication types: Journal ArticlePublication Status: ppublish
Abstract
The pharmacokinetics (PK) of efavirenz (EFV) is characterized by marked interpatient variability that correlates with its pharmacodynamics (PD). In vitro-in vivo extrapolation (IVIVE) is a "bottom-up" approach that combines drug data with system information to predict PK and PD. The aim of this study was to simulate EFV PK and PD after dose reductions. At the standard dose, the simulated probability was 80% for viral suppression and 28% for central nervous system (CNS) toxicity. After a dose reduction to 400 mg, the probabilities of viral suppression were reduced to 69, 75, and 82%, and those of CNS toxicity were 21, 24, and 29% for the 516 GG, 516 GT, and 516 TT genotypes, respectively. With reduction of the dose to 200 mg, the probabilities of viral suppression decreased to 54, 62, and 72% and those of CNS toxicity decreased to 13, 18, and 20% for the 516 GG, 516 GT, and 516 TT genotypes, respectively. These findings indicate how dose reductions might be applied in patients with favorable genetic characteristics.
Pubmed
Web of science
Create date
01/11/2012 18:34
Last modification date
06/08/2024 6:02
Usage data