Advances in computational and statistical diffusion MRI.

Détails

ID Serval
serval:BIB_93649F29E903
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Titre
Advances in computational and statistical diffusion MRI.
Périodique
NMR in biomedicine
Auteur(s)
O'Donnell L.J., Daducci A., Wassermann D., Lenglet C.
ISSN
1099-1492 (Electronic)
ISSN-L
0952-3480
Statut éditorial
Publié
Date de publication
04/2019
Peer-reviewed
Oui
Volume
32
Numéro
4
Pages
e3805
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Computational methods are crucial for the analysis of diffusion magnetic resonance imaging (MRI) of the brain. Computational diffusion MRI can provide rich information at many size scales, including local microstructure measures such as diffusion anisotropies or apparent axon diameters, whole-brain connectivity information that describes the brain's wiring diagram and population-based studies in health and disease. Many of the diffusion MRI analyses performed today were not possible five, ten or twenty years ago, due to the requirements for large amounts of computer memory or processor time. In addition, mathematical frameworks had to be developed or adapted from other fields to create new ways to analyze diffusion MRI data. The purpose of this review is to highlight recent computational and statistical advances in diffusion MRI and to put these advances into context by comparison with the more traditional computational methods that are in popular clinical and scientific use. We aim to provide a high-level overview of interest to diffusion MRI researchers, with a more in-depth treatment to illustrate selected computational advances.
Mots-clé
diffusion MRI, registration, statistics, tractography
Pubmed
Web of science
Création de la notice
16/11/2017 22:04
Dernière modification de la notice
20/08/2019 15:56
Données d'usage