COMPASS identifies T-cell subsets correlated with clinical outcomes.

Détails

Ressource 1Télécharger: BIB_8FADB11D7063.P001.pdf (1226.75 [Ko])
Etat: Serval
Version: de l'auteur
ID Serval
serval:BIB_8FADB11D7063
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
COMPASS identifies T-cell subsets correlated with clinical outcomes.
Périodique
Nature Biotechnology
Auteur(s)
Lin L., Finak G., Ushey K., Seshadri C., Hawn T.R., Frahm N., Scriba T.J., Mahomed H., Hanekom W., Bart P.A., Pantaleo G., Tomaras G.D., Rerks-Ngarm S., Kaewkungwal J., Nitayaphan S., Pitisuttithum P., Michael N.L., Kim J.H., Robb M.L., O'Connell R.J., Karasavvas N., Gilbert P., C De Rosa S., McElrath M.J., Gottardo R.
ISSN
1546-1696 (Electronic)
ISSN-L
1087-0156
Statut éditorial
Publié
Date de publication
2015
Peer-reviewed
Oui
Volume
33
Numéro
6
Pages
610-616
Langue
anglais
Résumé
Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software.
Pubmed
Web of science
Open Access
Oui
Création de la notice
06/07/2015 14:42
Dernière modification de la notice
08/05/2019 21:56
Données d'usage