Early onset collagen VI myopathies: Genetic and clinical correlations.
Details
Download: BIB_8CF325435E1C.P001.pdf (337.41 [Ko])
State: Public
Version: Final published version
State: Public
Version: Final published version
Serval ID
serval:BIB_8CF325435E1C
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Early onset collagen VI myopathies: Genetic and clinical correlations.
Journal
Annals of Neurology
ISSN
1531-8249[electronic], 0364-5134[linking]
Publication state
Published
Issued date
2010
Peer-reviewed
Oui
Volume
68
Number
4
Pages
511-520
Language
english
Abstract
OBJECTIVE: Mutations in the genes encoding the extracellular matrix protein collagen VI (ColVI) cause a spectrum of disorders with variable inheritance including Ullrich congenital muscular dystrophy, Bethlem myopathy, and intermediate phenotypes. We extensively characterized, at the clinical, cellular, and molecular levels, 49 patients with onset in the first 2 years of life to investigate genotype-phenotype correlations.
METHODS: Patients were classified into 3 groups: early-severe (18%), moderate-progressive (53%), and mild (29%). ColVI secretion was analyzed in patient-derived skin fibroblasts. Chain-specific transcript levels were quantified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and mutation identification was performed by sequencing of complementary DNA.
RESULTS: ColVI secretion was altered in all fibroblast cultures studied. We identified 56 mutations, mostly novel and private. Dominant de novo mutations were detected in 61% of the cases. Importantly, mutations causing premature termination codons (PTCs) or in-frame insertions strikingly destabilized the corresponding transcripts. Homozygous PTC-causing mutations in the triple helix domains led to the most severe phenotypes (ambulation never achieved), whereas dominant de novo in-frame exon skipping and glycine missense mutations were identified in patients of the moderate-progressive group (loss of ambulation).
INTERPRETATION: This work emphasizes that the diagnosis of early onset ColVI myopathies is arduous and time-consuming, and demonstrates that quantitative RT-PCR is a helpful tool for the identification of some mutation-bearing genes. Moreover, the clinical classification proposed allowed genotype-phenotype relationships to be explored, and may be useful in the design of future clinical trials.
METHODS: Patients were classified into 3 groups: early-severe (18%), moderate-progressive (53%), and mild (29%). ColVI secretion was analyzed in patient-derived skin fibroblasts. Chain-specific transcript levels were quantified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and mutation identification was performed by sequencing of complementary DNA.
RESULTS: ColVI secretion was altered in all fibroblast cultures studied. We identified 56 mutations, mostly novel and private. Dominant de novo mutations were detected in 61% of the cases. Importantly, mutations causing premature termination codons (PTCs) or in-frame insertions strikingly destabilized the corresponding transcripts. Homozygous PTC-causing mutations in the triple helix domains led to the most severe phenotypes (ambulation never achieved), whereas dominant de novo in-frame exon skipping and glycine missense mutations were identified in patients of the moderate-progressive group (loss of ambulation).
INTERPRETATION: This work emphasizes that the diagnosis of early onset ColVI myopathies is arduous and time-consuming, and demonstrates that quantitative RT-PCR is a helpful tool for the identification of some mutation-bearing genes. Moreover, the clinical classification proposed allowed genotype-phenotype relationships to be explored, and may be useful in the design of future clinical trials.
Keywords
congenital muscular-dystrophy, messenger-rna decay, bethlem myopathy, vonwillebrand-factor, sequence-analysis, globular domains, ullrich-disease, col6a1 gene, mutations, severity
Pubmed
Web of science
Open Access
Yes
Create date
11/11/2010 10:10
Last modification date
20/08/2019 14:51