Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter
Details
Serval ID
serval:BIB_8C08025C7EC2
Type
Article: article from journal or magazin.
Publication sub-type
Review (review): journal as complete as possible of one specific subject, written based on exhaustive analyses from published work.
Collection
Publications
Institution
Title
Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter
Journal
Anatomical Record
ISSN
0003-276X (Print)
Publication state
Published
Issued date
06/2002
Volume
267
Number
2
Pages
87-93
Notes
Journal Article
Review --- Old month value: Jun 1
Review --- Old month value: Jun 1
Abstract
This article reviews the current knowledge of the early onset of the monoaminergic innervation in the developing cerebral cortex in humans and of changes in the distribution of tyrosine hydroxylase (TH) immunoreactivity in different neuronal populations of the developing telencephalon. The early genesis of the central monoaminergic neurons in mammals has led to postulations of a trophic role of monoamines in brain morphogenesis--especially in the cerebral cortex. The developmental effects of amines can be linked to the transient expression of different molecules linked to dopamine or serotonin neurotransmission. We present novel data on the immunocytochemistry of the vesicular monoamine transporter (VMAT2) and of the high-affinity serotonin transporter (SERT) in human fetuses. SERT is a marker of the serotoninergic axons and allows visualization of the serotonin afferents of the raphe in the human telencephalon. In addition, during a restricted time period corresponding to 12-14 postovulatory weeks, we found SERT-immunolabeled fibers in the rostral and caudal limbs of the internal capsule that do not correspond to serotoninergic fibers, but do coincide with the calbindin D28k-labeled thalamocortical fiber tracts. The present observations are correlated with findings in rodents, in which a transient expression of SERT is visible in the thalamocortical axons during early postnatal life. The function of this transporter has been shown to be important for the fine-tuning of cortical sensory maps during the critical period of development of these maps. Although the present observation does not allow ascertainment of which neurons transiently express SERT, it lends support to the notion that serotonin and serotonin uptake could have important developmental roles, during the formation of brain connections in humans, as they have in rodents.
Keywords
Animals
Biological Markers
Biological Transport
Carrier Proteins/*metabolism
Cerebral Cortex/embryology/*enzymology
Embryonic and Fetal Development
Gestational Age
Humans
Membrane Glycoproteins/*metabolism
*Membrane Transport Proteins
Nerve Tissue Proteins/*metabolism
*Neuropeptides
Serotonin/*metabolism
Serotonin Plasma Membrane Transport Proteins
Tyrosine 3-Monooxygenase/metabolism
Vesicular Biogenic Amine Transport Proteins
Vesicular Monoamine Transport Proteins
Pubmed
Web of science
Open Access
Yes
Create date
24/01/2008 14:27
Last modification date
20/08/2019 14:50