Widespread natural selection on metabolite levels in humans.
Details
Serval ID
serval:BIB_8BA5B38ED629
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Widespread natural selection on metabolite levels in humans.
Journal
Genome research
ISSN
1549-5469 (Electronic)
ISSN-L
1088-9051
Publication state
Published
Issued date
20/09/2024
Peer-reviewed
Oui
Volume
34
Number
8
Pages
1121-1129
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Abstract
Natural selection acts ubiquitously on complex human traits, predominantly constraining the occurrence of extreme phenotypes (stabilizing selection). These constraints propagate to DNA sequence variants associated with traits under selection. The genetic signatures of such evolutionary events can thus be detected via combining effect size estimates from genetic association studies and the corresponding allele frequencies. Although this approach has been successfully applied to high-level traits, the prevalence and mode of selection acting on molecular traits remain poorly understood. Here, we estimate the action of natural selection on genetic variants associated with metabolite levels, an important layer of molecular traits. By leveraging summary statistics of published genome-wide association studies with large sample sizes, we find strong evidence of stabilizing selection for 15 out of 97 plasma metabolites, with nonessential amino acids displaying especially strong selection signatures. Mendelian randomization analysis reveals that metabolites under stronger stabilizing selection display larger effects on a range of clinically relevant complex traits, suggesting that maintaining a disease-free profile may be an important source of selective constraints on the metabolome. Metabolites under strong stabilizing selection in humans are also more conserved in their concentrations among diverse mammalian species, suggesting shared selective forces across micro- and macroevolutionary timescales. Overall, this study demonstrates that variation in metabolite levels among humans is frequently shaped by natural selection and this may act through their causal impact on disease susceptibility.
Keywords
Selection, Genetic, Humans, Genome-Wide Association Study/methods, Metabolome, Phenotype, Evolution, Molecular, Gene Frequency, Animals, Mendelian Randomization Analysis, Polymorphism, Single Nucleotide
Pubmed
Web of science
Open Access
Yes
Create date
26/08/2024 10:56
Last modification date
11/10/2024 19:14